
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 9: Virtual Memory

9.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 9: Virtual Memory

 Background

 Demand Paging

 Copy-on-Write

 Page Replacement

 Allocation of Frames

 Thrashing

 Memory-Mapped Files

 Allocating Kernel Memory

 Other Considerations

 Operating-System Examples

9.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To describe the benefits of a virtual memory system

 To explain the concepts of demand paging, page-

replacement algorithms, and allocation of page frames

 To discuss the principle of the working-set model

 To examine the relationship between shared memory and

memory-mapped files

 To explore how kernel memory is managed

9.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

 Code needs to be in memory to execute, but entire program

rarely used

 Error code, unusual routines, large data structures

 Entire program code not needed at same time

 Consider ability to execute partially-loaded program

 Program no longer constrained by limits of physical

memory

 Each program takes less memory while running -> more

programs run at the same time

Increased CPU utilization and throughput with no

increase in response time or turnaround time

 Less I/O needed to load or swap programs into memory -

> each user program runs faster

9.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background (Cont.)

 Virtual memory – separation of user logical memory from

physical memory

 Only part of the program needs to be in memory for

execution

 Logical address space can therefore be much larger than

physical address space

 Allows address spaces to be shared by several

processes

 Allows for more efficient process creation

 More programs running concurrently

 Less I/O needed to load or swap processes

9.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background (Cont.)

 Virtual address space – logical view of how process is

stored in memory

 Usually start at address 0, contiguous addresses until

end of space

 Meanwhile, physical memory organized in page frames

 MMU must map logical to physical

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

9.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Virtual Memory That is Larger Than Physical Memory

9.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Virtual-address Space

 Usually design logical address space for stack to

start at Max logical address and grow “down”

while heap grows “up”

 Maximizes address space use

 Unused address space between the two is

hole

 No physical memory needed until

heap or stack grows to a given new

page

 Enables sparse address spaces with holes left

for growth, dynamically linked libraries, etc

 System libraries shared via mapping into virtual

address space

 Shared memory by mapping pages read-write

into virtual address space

 Pages can be shared during fork(), speeding

process creation

9.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shared Library Using Virtual Memory

9.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging

 Could bring entire process into memory
at load time

 Or bring a page into memory only when it
is needed

 Less I/O needed, no unnecessary I/O

 Less memory needed

 Faster response

 More users

 Similar to paging system with swapping
(diagram on right)

 Page is needed  reference to it

 invalid reference  abort

 not-in-memory  bring to memory

 Lazy swapper – never swaps a page
into memory unless page will be needed

 Swapper that deals with pages is a
pager

9.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Concepts

 With swapping, pager guesses which pages will be used

before swapping out again

 Instead, pager brings in only those pages into memory

 How to determine that set of pages?

 Need new MMU functionality to implement demand paging

 If pages needed are already memory resident

 No difference from non demand-paging

 If page needed and not memory resident

 Need to detect and load the page into memory from

storage

Without changing program behavior

Without programmer needing to change code

9.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(v  in-memory – memory resident, i  not-in-memory)

 Initially valid–invalid bit is set to i on all entries (demand paging)

 Example of a page table snapshot:

 During MMU address translation, if valid–invalid bit in page table entry
is i  page fault

9.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Table When Some Pages Are Not in Main Memory

9.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Fault

 If there is a reference to a page, first reference to that page
will trap to operating system:

page fault

1. Operating system looks at another table to decide:

 Invalid reference  abort

 Just not in memory

2. Find free frame

3. Swap page into frame via scheduled disk operation

4. Reset tables to indicate page now in memory
Set validation bit = v

5. Restart the instruction that caused the page fault

9.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Steps in Handling a Page Fault

9.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Aspects of Demand Paging

 Extreme case – start process with no pages in memory

 OS sets instruction pointer to first instruction of process, non-

memory-resident -> page fault

 And for every other process pages on first access

 Pure demand paging

 Actually, a given instruction could access multiple pages -> multiple page

faults

 Consider fetch and decode of instruction which adds 2 numbers from

memory and stores result back to memory

 Pain decreased because of locality of reference

 Hardware support needed for demand paging

 Page table with valid / invalid bit

 Secondary memory (swap device with swap space)

 Instruction restart

9.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Instruction Restart

 Consider an instruction that could access several different locations

 block move

 Restart the whole operation?

What if source and destination overlap?

9.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Performance of Demand Paging

 Stages in Demand Paging (worse case)

1. Trap to the operating system

2. Save the user registers and process state

3. Determine that the interrupt was a page fault

4. Check that the page reference was legal and determine the location of the page on the disk

5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced

2. Wait for the device seek and/or latency time

3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user

7. Receive an interrupt from the disk I/O subsystem (I/O completed)

8. Save the registers and process state for the other user

9. Determine that the interrupt was from the disk

10. Correct the page table and other tables to show page is now in memory

11. Wait for the CPU to be allocated to this process again

12. Restore the user registers, process state, and new page table, and then resume the

interrupted instruction

9.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Performance of Demand Paging (Cont.)

 Three major activities

 Service the interrupt – careful coding means just several hundred

instructions needed

 Read the page – lots of time

 Restart the process – again just a small amount of time

 Page Fault Rate 0  p  1

 if p = 0 no page faults

 if p = 1, every reference is a fault

 Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p (page fault overhead

+ swap page out

+ swap page in)

9.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging Example

 Memory access time = 200 nanoseconds

 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p (8 milliseconds)

= (1 – p x 200 + p x 8,000,000

= 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then

EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

 If want performance degradation < 10 percent

 220 > 200 + 7,999,800 x p

20 > 7,999,800 x p

 p < .0000025

 < one page fault in every 400,000 memory accesses

9.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging Optimizations

 Swap space I/O faster than file system I/O even if on the same device

 Swap allocated in larger chunks, less management needed than file system

 Copy entire process image to swap space at process load time

 Then page in and out of swap space

 Used in older BSD Unix

 Demand page in from program binary on disk, but discard rather than paging out

when freeing frame

 Used in Solaris and current BSD

 Still need to write to swap space

 Pages not associated with a file (like stack and heap) – anonymous

memory

 Pages modified in memory but not yet written back to the file system

 Mobile systems

 Typically don’t support swapping

 Instead, demand page from file system and reclaim read-only pages (such as

code)

9.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Copy-on-Write

 Copy-on-Write (COW) allows both parent and child processes to initially

share the same pages in memory

 If either process modifies a shared page, only then is the page

copied

 COW allows more efficient process creation as only modified pages are

copied

 In general, free pages are allocated from a pool of zero-fill-on-demand

pages

 Pool should always have free frames for fast demand page execution

Don’t want to have to free a frame as well as other processing on

page fault

 Why zero-out a page before allocating it?

 vfork() variation on fork() system call has parent suspend and

child using copy-on-write address space of parent

 Designed to have child call exec()

 Very efficient

9.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Before Process 1 Modifies Page C

9.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

After Process 1 Modifies Page C

9.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

What Happens if There is no Free Frame?

 Used up by process pages

 Also in demand from the kernel, I/O buffers, etc

 How much to allocate to each?

 Page replacement – find some page in memory, but not

really in use, page it out

 Algorithm – terminate? swap out? replace the page?

 Performance – want an algorithm which will result in

minimum number of page faults

 Same page may be brought into memory several times

9.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Replacement

 Prevent over-allocation of memory by modifying page-fault

service routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers

– only modified pages are written to disk

 Page replacement completes separation between logical

memory and physical memory – large virtual memory can be

provided on a smaller physical memory

9.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Need For Page Replacement

9.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

- If there is a free frame, use it

- If there is no free frame, use a page replacement

algorithm to select a victim frame

- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update

the page and frame tables

4. Continue the process by restarting the instruction that

caused the trap

Note now potentially 2 page transfers for page fault –

increasing EAT

9.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page Replacement

9.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page and Frame Replacement Algorithms

 Frame-allocation algorithm determines

 How many frames to give each process

 Which frames to replace

 Page-replacement algorithm

 Want lowest page-fault rate on both first access and re-access

 Evaluate algorithm by running it on a particular string of memory

references (reference string) and computing the number of page faults

on that string

 String is just page numbers, not full addresses

 Repeated access to the same page does not cause a page fault

 Results depend on number of frames available

 In all our examples, the reference string of referenced page numbers

is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

9.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Graph of Page Faults Versus The Number of Frames

9.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First-In-First-Out (FIFO) Algorithm

 Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

 3 frames (3 pages can be in memory at a time per process)

 Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5

 Adding more frames can cause more page faults!

Belady’s Anomaly

 How to track ages of pages?

 Just use a FIFO queue

15 page faults

9.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

FIFO Illustrating Belady’s Anomaly

9.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Optimal Algorithm

 Replace page that will not be used for longest period of

time

 9 is optimal for the example

 How do you know this?

 Can’t read the future

 Used for measuring how well your algorithm performs

9.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Least Recently Used (LRU) Algorithm

 Use past knowledge rather than future

 Replace page that has not been used in the most amount of

time

 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT

 Generally good algorithm and frequently used

 But how to implement?

9.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

LRU Algorithm (Cont.)

 Counter implementation

 Every page entry has a counter; every time page is referenced

through this entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to find

smallest value

Search through table needed

 Stack implementation

 Keep a stack of page numbers in a double link form:

 Page referenced:

move it to the top

 requires 6 pointers to be changed

 But each update more expensive

 No search for replacement

 LRU and OPT are cases of stack algorithms that don’t have Belady’s

Anomaly

9.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Use of a Stack to Record Most Recent Page References

9.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

LRU Approximation Algorithms

 LRU needs special hardware and still slow

 Reference bit

 With each page associate a bit, initially = 0

 When page is referenced bit set to 1

 Replace any with reference bit = 0 (if one exists)

We do not know the order, however

 Second-chance algorithm

 Generally FIFO, plus hardware-provided reference bit

 Clock replacement

 If page to be replaced has

Reference bit = 0 -> replace it

 reference bit = 1 then:

– set reference bit 0, leave page in memory

– replace next page, subject to same rules

9.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Second-Chance (clock) Page-Replacement Algorithm

9.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Enhanced Second-Chance Algorithm

 Improve algorithm by using reference bit and modify bit (if available) in

concert

 Take ordered pair (reference, modify)

1. (0, 0) neither recently used not modified – best page to replace

2. (0, 1) not recently used but modified – not quite as good, must write out

before replacement

3. (1, 0) recently used but clean – probably will be used again soon

4. (1, 1) recently used and modified – probably will be used again soon and

need to write out before replacement

 When page replacement called for, use the clock scheme but use the

four classes replace page in lowest non-empty class

 Might need to search circular queue several times

9.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Counting Algorithms

 Keep a counter of the number of references that have

been made to each page

 Not common

 Least Frequently Used (LFU) Algorithm: replaces

page with smallest count

 Most Frequently Used (MFU) Algorithm: based on

the argument that the page with the smallest count

was probably just brought in and has yet to be used

9.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page-Buffering Algorithms

 Keep a pool of free frames

 Select the free frame from the pool

 Read page into free frame and

 Select victim to evict and add to free pool

 Possibly, keep list of modified pages

 Whenever paging device is idle, write pages onto disk and

set to non-dirty

 Possibly, keep free frame contents intact and remember which

page it carrying

 If referenced again before reused, no need to load contents

again from disk

 Generally useful to reduce penalty if wrong victim frame

selected

9.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Allocation of Frames

 Each process needs minimum number of frames

 Example: IBM 370 – 6 pages to handle SS MOVE

instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

 Pure Demand Paging: All frames will be placed in pool of

free frames

 Two major allocation schemes

 fixed allocation

 priority allocation

 Many variations

9.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Fixed Allocation

 Equal allocation – For example, if there are 100 frames (after allocating

frames for the OS) and 5 processes, give each process 20 frames

 Keep some as free frame buffer pool

 Proportional allocation – Allocate according to the size of process

 Dynamic as degree of multiprogramming, process sizes change

m
S

s
pa

m

sS

ps

i
ii

i

ii









 for allocation

frames of number total

 process of size

m = 64

s1 =10

s2 =127

a1 =
10

137
´ 62 » 4

a2 =
127

137
´ 62 » 57

9.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Allocation

 Use a proportional allocation scheme using priorities

rather than size

 If process Pi generates a page fault,

 select for replacement one of its frames

 select for replacement a frame from a process with

lower priority number

9.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Global vs. Local Allocation

 Global replacement – process selects a replacement

frame from the set of all frames; one process can take a

frame from another

 But then process execution time can vary greatly, no

control over its page-fault rate

 But greater throughput so more common

 Local replacement – each process selects from only its

own set of allocated frames

 More consistent per-process performance

 But possibly underutilized memory

9.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Non-Uniform Memory Access

 So far all memory accessed equally

 Many systems are NUMA – speed of access to memory varies

 Consider system boards containing CPUs and memory,

interconnected over a system bus

 Optimal performance comes from allocating memory “close to” the CPU

on which the thread is scheduled

 And modifying the scheduler to schedule the thread on the same

system board when possible

 Solved by Solaris by creating lgroups

Structure to track CPU / Memory low latency groups

Used my schedule and pager

When possible schedule all threads of a process and allocate all

memory for that process within the lgroup

9.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thrashing

 If a process does not have “enough” pages, the page-fault

rate is very high

 Page fault to get page

 Replace existing frame

 But quickly need replaced frame back

 This leads to:

Low CPU utilization

Operating system thinking that it needs to increase the

degree of multiprogramming

Another process added to the system

 Thrashing  a process is busy swapping pages in and out

9.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thrashing (Cont.)

9.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging and Thrashing

 Why does demand paging work?

Locality model

 Process migrates from one locality to another

 Localities may overlap

 Why does thrashing occur?

 size of locality > total memory size

 Limit effects by using local or priority page replacement

9.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Locality In A Memory-Reference Pattern

9.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Working-Set Model

   working-set window  a fixed number of page references

Example: 10,000 instructions

 WSSi (working set of Process Pi) =

total number of pages referenced in the most recent  (varies in time)

 if  too small will not encompass entire locality

 if  too large will encompass several localities

 if  =   will encompass entire program

 D =  WSSi  total demand frames

 Approximation of locality

 if D > m  Thrashing

 Policy if D > m, then suspend or swap out one of the processes

9.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Keeping Track of the Working Set

 Approximate with interval timer + a reference bit

 Example:  = 10,000

 Timer interrupts after every 5000 time units

 Keep in memory 2 bits for each page

 Whenever a timer interrupts copy and sets the values of all

reference bits to 0

 If one of the bits in memory = 1  page in working set

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000 time units

9.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page-Fault Frequency

 More direct approach than WSS

 Establish “acceptable” page-fault frequency (PFF)

rate and use local replacement policy

 If actual rate too low, process loses frame

 If actual rate too high, process gains frame

9.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Working Sets and Page Fault Rates

 Direct relationship between working set of a process and

its page-fault rate

 Working set changes over time

 Peaks and valleys over time

9.57 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine memory

access by mapping a disk block to a page in memory

 A file is initially read using demand paging

 A page-sized portion of the file is read from the file system into a

physical page

 Subsequent reads/writes to/from the file are treated as ordinary

memory accesses

 Simplifies and speeds file access by driving file I/O through memory
rather than read() and write() system calls

 Also allows several processes to map the same file allowing the pages

in memory to be shared

 But when does written data make it to disk?

 Periodically and / or at file close() time

 For example, when the pager scans for dirty pages

9.58 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Memory-Mapped File Technique for all I/O

 Some OSes uses memory mapped files for standard I/O

 Process can explicitly request memory mapping a file via mmap()

system call

 Now file mapped into process address space

 For standard I/O (open(), read(), write(), close()), mmap

anyway

 But map file into kernel address space

 Process still does read() and write()

Copies data to and from kernel space and user space

 Uses efficient memory management subsystem

Avoids needing separate subsystem

 COW can be used for read/write non-shared pages

 Memory mapped files can be used for shared memory (although again

via separate system calls)

9.59 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Memory Mapped Files

9.60 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shared Memory via Memory-Mapped I/O

9.61 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shared Memory in Windows API

 First create a file mapping for file to be mapped

 Then establish a view of the mapped file in process’s

virtual address space

 Consider producer / consumer

 Producer create shared-memory object using memory

mapping features

 Open file via CreateFile(), returning a HANDLE

 Create mapping via CreateFileMapping() creating

a named shared-memory object

 Create view via MapViewOfFile()

 Sample code in Textbook

9.62 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Allocating Kernel Memory

 Treated differently from user memory

 Often allocated from a free-memory pool

 Kernel requests memory for structures of varying sizes

 Some kernel memory needs to be contiguous

I.e. for device I/O

9.63 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Buddy System

 Allocates memory from fixed-size segment consisting of physically-

contiguous pages

 Memory allocated using power-of-2 allocator

 Satisfies requests in units sized as power of 2

 Request rounded up to next highest power of 2

 When smaller allocation needed than is available, current chunk split

into two buddies of next-lower power of 2

Continue until appropriate sized chunk available

 For example, assume 256KB chunk available, kernel requests 21KB

 Split into AL and AR of 128KB each

One further divided into BL and BR of 64KB

– One further into CL and CR of 32KB each – one used to satisfy

request

 Advantage – quickly coalesce unused chunks into larger chunk

 Disadvantage - fragmentation

9.64 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Buddy System Allocator

9.65 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Slab Allocator

 Alternate strategy

 Slab is one or more physically contiguous pages

 Cache consists of one or more slabs

 Single cache for each unique kernel data structure

 Each cache filled with objects – instantiations of the

data structure

 When cache created, filled with objects marked as free

 When structures stored, objects marked as used

 If slab is full of used objects, next object allocated from

empty slab

 If no empty slabs, new slab allocated

 Benefits include no fragmentation, fast memory request

satisfaction

9.66 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Slab Allocation

9.67 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Slab Allocator in Linux

 For example process descriptor is of type struct task_struct

 Approx 1.7KB of memory

 New task -> allocate new struct from cache

 Will use existing free struct task_struct

 Slab can be in three possible states

1. Full – all used

2. Empty – all free

3. Partial – mix of free and used

 Upon request, slab allocator

1. Uses free struct in partial slab

2. If none, takes one from empty slab

3. If no empty slab, create new empty

9.68 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Slab Allocator in Linux (Cont.)

 Slab started in Solaris, now wide-spread for both kernel

mode and user memory in various OSes

 Linux 2.2 had SLAB, now has both SLOB and SLUB

allocators

 SLOB for systems with limited memory

Simple List of Blocks – maintains 3 list objects for

small, medium, large objects

 SLUB is performance-optimized SLAB removes per-CPU

queues, metadata stored in page structure

9.69 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Other Considerations -- Prepaging

 Prepaging

 To reduce the large number of page faults that occurs at

process startup

 Prepage all or some of the pages a process will need,

before they are referenced

 But if prepaged pages are unused, I/O and memory was

wasted

 Assume s pages are prepaged and α of the pages is

used

Is cost of s * α save pages faults > or < than the cost

of prepaging s * (1- α) unnecessary pages?

α near zero  prepaging loses

9.70 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Other Issues – Page Size

 Sometimes OS designers have a choice

 Especially if running on custom-built CPU

 Page size selection must take into consideration:

 Fragmentation

 Page table size

 Resolution

 I/O overhead

 Number of page faults

 Locality

 TLB size and effectiveness

 Always power of 2, usually in the range 212 (4,096 bytes) to 222

(4,194,304 bytes)

 On average, growing over time

9.71 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Other Issues – TLB Reach

 TLB Reach - The amount of memory accessible from the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB

 Otherwise there is a high degree of page faults

 Increase the Page Size

 This may lead to an increase in fragmentation as not all applications

require a large page size

 Provide Multiple Page Sizes

 This allows applications that require larger page sizes the

opportunity to use them without an increase in fragmentation

9.72 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Other Issues – Program Structure

 Program structure

 int[128,128] data;

 Each row is stored in one page

 Program 1

for (j = 0; j <128; j++)

for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults

 Program 2

for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)

data[i,j] = 0;

128 page faults

9.73 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Other Issues – I/O interlock

 I/O Interlock – Pages must

sometimes be locked into

memory

 Consider I/O - Pages that are

used for copying a file from a

device must be locked from

being selected for eviction by

a page replacement algorithm

 Pinning of pages to lock into

memory

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 9

