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G Objectives

B To describe the benefits of a virtual memory system

®m To explain the concepts of demand paging, page-
replacement algorithms, and allocation of page frames

B To discuss the principle of the working-set model

® To examine the relationship between shared memory and
memory-mapped files

® To explore how kernel memory is managed
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7 Background

® Code needs to be in memory to execute, but entire program
rarely used

e Error code, unusual routines, large data structures
B Entire program code not needed at same time
m Consider ability to execute partially-loaded program

e Program no longer constrained by limits of physical
memory

e Each program takes less memory while running -> more
programs run at the same time

» Increased CPU utilization and throughput with no
Increase Iin response time or turnaround time

e Less I/O needed to load or swap programs into memg
> each user program runs faster
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G Background (Cont.)

®m Virtual memory — separation of user logical memory from
physical memory

e Only part of the program needs to be in memory for
execution

e Logical address space can therefore be much larger than
physical address space

e Allows address spaces to be shared by several
processes

e Allows for more efficient process creation
e More programs running concurrently
e Less I/O needed to load or swap processes
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7 Background (Cont.)

m Virtual address space — logical view of how process is
stored in memory

e Usually start at address 0, contiguous addresses until
end of space

e Meanwhile, physical memory organized in page frames
e MMU must map logical to physical
® Virtual memory can be implemented via:
e Demand paging
e Demand segmentation
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‘r«;»—/ Virtual Memory That is Larger Than Physical Memory
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g Virtual-address Space

Max
m  Usually design logical address space for stack to
start at Max logical address and grow “down”
while heap grows “up”

e Maximizes address space use

e Unused address space between the two is
hole

» No physical memory needed until
heap or stack grows to a given new

page
B Enables sparse address spaces with holes left
for growth, dynamically linked libraries, etc

m  System libraries shared via mapping into virtual
address space

®m  Shared memory by mapping pages read-write
into virtual address space

m Pages can be shared during fork (), speeding
process creation
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G Demand Paging
m Could bring entire process into memory
at load time
m Or bring a page into memory only when it
IS needed N
- . 0 4
e Less I/O needed, no unnecessary I/O
e Less memory needed program , . BT e 1 2
. 403 510 60 703
e Faster response
<. 819 Ho[ 1]
e More users
A g2 13 114 {5 |
m  Similar to paging system with swapping
(diagram on right) e "X\_s¥ap in L
. ) » 20 21122 123[ |
B Page is needed = reference to it -, W

e invalid reference = abort

e not-in-memory = bring to memory

main
memory

m |azy swapper — never swaps a page
into memory unless page will be needed

e Swapper that deals with pages is a
pager
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S Basic Concepts

® With swapping, pager guesses which pages will be used
before swapping out again

B Instead, pager brings in only those pages into memory
® How to determine that set of pages?
e Need new MMU functionality to implement demand paging
B |f pages needed are already memory resident
e No difference from non demand-paging
B |f page needed and not memory resident

e Need to detect and load the page into memory from
storage

» Without changing program behavior
» Without programmer needing to change code "5
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<§57 Valid-Invalid Bit

® With each page table entry a valid—invalid bit is associated
(Vv = in-memory — memory resident, i = not-in-memory)

®m Initially valid—invalid bit is set to i on all entries (demand paging)
m Example of a page table snapshot:

Frame # valid-invalid bit

- < < |<

page table

® During MMU address translation, if valid—invalid bit in page table entry..
IS | = page fault
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‘«/;».—/ Page Table When Some Pages Are Not in Main Memory

0
.1
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7 Page Fault

m If there Is a reference to a page, first reference to that page
will trap to operating system:

page fault
1. Operating system looks at another table to decide:
e |nvalid reference = abort
e Just not in memory
2. Find free frame
3. Swap page into frame via scheduled disk operation

4. Reset tables to indicate page now in memory
Set validation bit = v

5. Restart the instruction that caused the page fault
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“g%7  Steps in Handling a Page Fault
~ @ page is on
backing store //_\
p \v
operating
system
reference tr@p
load M e - i
restart page table
instruction
free frame 1« _—
reset page bring in
table missing page
physical
memory
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37/ Aspects of Demand Paging

B Extreme case — start process with no pages in memory

e OS sets instruction pointer to first instruction of process, non-
memory-resident -> page fault

e And for every other process pages on first access
e Pure demand paging

m Actually, a given instruction could access multiple pages -> multiple page
faults

e Consider fetch and decode of instruction which adds 2 numbers from
memory and stores result back to memory

e Pain decreased because of locality of reference
m Hardware support needed for demand paging
e Page table with valid / invalid bit

e Secondary memory (swap device with swap space)
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7 Instruction Restart

' 4

®m Consider an instruction that could access several different locations

e block move

e Restart the whole operation?
» What if source and destination overlap?
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3»/ Performance of Demand Paging
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11.
12.

Stages in Demand Paging (worse case)
Trap to the operating system
Save the user registers and process state
Determine that the interrupt was a page fault
Check that the page reference was legal and determine the location of the page on the disk
Issue a read from the disk to a free frame:
1. Wait in a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame
While waiting, allocate the CPU to some other user
Receive an interrupt from the disk I/O subsystem (I/O completed)
Save the registers and process state for the other user
Determine that the interrupt was from the disk

. Correct the page table and other tables to show page is now in memory

Wait for the CPU to be allocated to this process again

Restore the user registers, process state, and new page table, and then resume the 1

interrupted instruction - &3‘

A3
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=57 Performance of Demand Paging (Cont.)

® Three major activities

e Service the interrupt — careful coding means just several hundred
Instructions needed

e Read the page - lots of time

e Restart the process — again just a small amount of time
B Page FaultRate0<p<1

e if p =0 no page faults

e if p =1, every reference is a fault
m Effective Access Time (EAT)

EAT = (1 — p) X memory access
+ p (page fault overhead
+ swap page out
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r & Demand Paging Example

he

B Memory access time = 200 nanoseconds
B Average page-fault service time = 8 milliseconds
m EAT =(1-p)x 200 + p (8 milliseconds)
=(1-p x200 + p x 8,000,000
=200 + p x 7,999,800
m If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!
m If want performance degradation < 10 percent

e 220> 200 + 7,999,800 x p
20 > 7,999,800 x p

e p <.0000025
e < one page fault in every 400,000 memory accesses




=

«¢% Demand Paging Optimizations

B Swap space /O faster than file system I/O even if on the same device

e Swap allocated in larger chunks, less management needed than file system
B Copy entire process image to swap space at process load time

e Then page in and out of swap space

e Used in older BSD Unix

®m Demand page in from program binary on disk, but discard rather than paging out
when freeing frame

e Used in Solaris and current BSD
e Still need to write to swap space

» Pages not associated with a file (like stack and heap) — anonymous
memory

» Pages modified in memory but not yet written back to the file system
® Mobile systems
e Typically don’t support swapping

¢has

e Instead, demand page from file system and reclaim read-only pages (s )
code) iy

A3
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G Copy-on-Write

m Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

e If either process modifies a shared page, only then is the page
copied

m COW allows more efficient process creation as only modified pages are
copied

® In general, free pages are allocated from a pool of zero-fill-on-demand
pages

e Pool should always have free frames for fast demand page execution

» Don’t want to have to free a frame as well as other processing on
page fault

e Why zero-out a page before allocating it?

B vfork () variationon fork () system call has parent suspend and
child using copy-on-write address space of parent

e Designed to have child call exec () A
Va

Ay

Operating Sy\s{e%r%ncee.!;ﬂg b@ Qj‘,:tion 9.22 Silberschatz, Galvin and Gagne ©2013




=

o
LT

“»~/ Before Process 1 Modifies Page C

Process,

physical
memory

page A

-

page B
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sr/;;;:} After Process 1 Modifies Page C
physical
Process, memory process,

> page A *

- page B «—

page C — ]

— Copy of page C

Wy
L 49X
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g’ What Happens if There is no Free Frame?

® Used up by process pages
B Also in demand from the kernel, I/O buffers, etc
B How much to allocate to each?

B Page replacement — find some page in memory, but not
really in use, page it out

e Algorithm — terminate? swap out? replace the page”?

e Performance — want an algorithm which will result in
minimum number of page faults

B Same page may be brought into memory several times
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S Page Replacement

B Prevent over-allocation of memory by modifying page-fault
service routine to include page replacement

B Use modify (dirty) bit to reduce overhead of page transfers
— only modified pages are written to disk

B Page replacement completes separation between logical
memory and physical memory — large virtual memory can be
provided on a smaller physical memory
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> Need For Page Replacement
valid-invalid

0 H frame bit 0| monitor
oa v

2| 4 & v 2| D
5 |
3l M i 3| H B
logical memory page table 4| load M
for user 1 for user 1
5 J
6 A
o M
valid—invalid 7 E
0 A frame blt
M ¥ physical
i B 6 v memory \—//
2| D |
2 |v
3 = 7 |v

logical memory ~ page table
for user 2 for user 2
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L Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there Is a free frame, use it
- If there is no free frame, use a page replacement
algorithm to select a victim frame
- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update
the page and frame tables

4. Continue the process by restarting the instruction that
caused the trap

Note now potentially 2 page transfers for page fault —
Increasing EAT

e




T Page Replacement

frame valid—invalid bit

N Y

swap out
Change victim

f| wvictim
reset page
table for
page table new page @ Swap
desired
page in

physical
memory
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<4»7 Page and Frame Replacement Algorithms

m Frame-allocation algorithm determines
e How many frames to give each process
e Which frames to replace
B Page-replacement algorithm
e Want lowest page-fault rate on both first access and re-access

®m Evaluate algorithm by running it on a particular string of memory
references (reference string) and computing the number of page faults
on that string

e String is just page numbers, not full addresses
e Repeated access to the same page does not cause a page fault
e Results depend on number of frames available

® |n all our examples, the reference string of referenced page numbers
IS

7.01,2,0,3,0,4,2.3,0,3,03212017.01 Da !
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7 Graph of Page Faults Versus The Number of Frames

314 \
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&a‘;—“’ﬁ First-In-First-Out (FIFO) Algorithm

m Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
m 3 frames (3 pages can be in memory at a time per process)

reference Stl‘il'lg
0 4 2 3 0 3 2

page frames

15 page faults
m Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
e Adding more frames can cause more page faults!
» Belady’ s Anomaly
® How to track ages of pages?

e Just use a FIFO queue £ &
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FIFO lllustrating Belady’ s Anomaly

number of page faults

nNn &~ O 00

1 2 3 4 5 6
number of frames
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i Optimal Algorithm

m Replace page that will not be used for longest period of
time

e 9 is optimal for the example
® How do you know this?
e Can’tread the future
®m Used for measuring how well your algorithm performs

reference string
i 01 2 0 3 0 4 2 3 0 3 2 1 2 01 7 0 1

AEEE B B B B @ F
L ol 9 @ 4 g 0 0
S L < I ] 3 1 L
age frames Y
Pag s

\ L
Yy
Aahve
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k{;  Least Recently Used (LRU) Algorithm

B Use past knowledge rather than future

B Replace page that has not been used in the most amount of
time

B Associate time of last use with each page

reference string
/7 0 1 2 0 8 0 4 2 3 0 3 2 1 2 0 1 7 0 1

B N = 2 41 14| |4 |0 1 1 1
0| |0 (O 0 0| |0 (3] |3 3 0 0
1| 3 3 21 2] [2 2 2 7

page frames

m 12 faults — better than FIFO but worse than OPT
B Generally good algorithm and frequently used

» ‘:\\‘1
® But how to implement? /5" e




P .
L LRU Algorithm (Cont.)
® Counter implementation

e Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

e When a page needs to be changed, look at the counters to find
smallest value

» Search through table needed

m Stack implementation
e Keep a stack of page numbers in a double link form:
e Page referenced:
» move it to the top
» requires 6 pointers to be changed
e But each update more expensive
e No search for replacement

B LRU and OPT are cases of stack algorithms that don’ t have Bel y-g,,&vl
Anomaly
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&/;,,/,—/ Use of a Stack to Record Most Recent Page References

reference string
4 7 0 7

>~ | N | O

stack
before
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4%’ LRU Approximation Algorithms

® LRU needs special hardware and still slow
B Reference bit
e With each page associate a bit, initially = 0
e When page is referenced bit setto 1
e Replace any with reference bit = O (if one exists)
» We do not know the order, however
B Second-chance algorithm
e Generally FIFO, plus hardware-provided reference bit
e Clock replacement
e If page to be replaced has
» Reference bit = 0 -> replace it
» reference bit = 1 then:
set reference bit O, leave page in memory
replace next page, subject to same rules
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Q««;»;f} Second-Chance (clock) Page-Replacement Algorithm

reference  pages
bits f\

0

next :‘
victim L

<< <“HFH @ <¢H 2=

v

N

circular queue of pages
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«§»7  Enhanced Second-Chance Algorithm

B Improve algorithm by using reference bit and modify bit (if available) in
concert

m Take ordered pair (reference, modify)
1. (0, 0) neither recently used not modified — best page to replace

2. (0, 1) not recently used but modified — not quite as good, must write out
before replacement

3. (1, 0) recently used but clean — probably will be used again soon

4. (1, 1) recently used and modified — probably will be used again soon and
need to write out before replacement

® When page replacement called for, use the clock scheme but use the
four classes replace page in lowest non-empty class

e Might need to search circular queue several times

il /"&,-ow‘
AU 290%™
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g5 Counting Algorithms

B Keep a counter of the number of references that have
been made to each page

e Not common

B Least Frequently Used (LFU) Algorithm: replaces
page with smallest count

B Most Frequently Used (MFU) Algorithm: based on
the argument that the page with the smallest count
was probably just brought in and has yet to be used
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y o Page-Buffering Algorithms

Keep a pool of free frames

e Select the free frame from the pool

e Read page into free frame and

e Select victim to evict and add to free pool
m Possibly, keep list of modified pages

e Whenever paging device is idle, write pages onto disk and
set to non-dirty

m Possibly, keep free frame contents intact and remember which
page it carrying
e |f referenced again before reused, no need to load contents
again from disk

e Generally useful to reduce penalty iIf wrong victim framef:;‘\
selected Ve
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L Allocation of Frames

® Each process needs minimum number of frames

B Example: IBM 370 — 6 pages to handle SS MOVE
Instruction:

e instruction is 6 bytes, might span 2 pages
e 2 pages to handle from
e 2 pages to handle to

® Pure Demand Paging: All frames will be placed in pool of
free frames

® Two major allocation schemes
e fixed allocation
e priority allocation

® Many variations i /*“wl

Silberschatz, Galvin and Gaghe ©2013
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S Fixed Allocation

m Equal allocation — For example, if there are 100 frames (after allocating
frames for the OS) and 5 processes, give each process 20 frames

e Keep some as free frame buffer pool

®m Proportional allocation — Allocate according to the size of process
e Dynamic as degree of multiprogramming, process sizes change

m =64
S, = Size of process p; s1=10
S = ZSi S5 =127
m = total number of frames 2 = 10 . 62 5 4
. S, 137
a, =allocationfor p, = = xm 197
S a,==2L" 62 » 57
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o Priority Allocation

B Use a proportional allocation scheme using priorities
rather than size

m If process P; generates a page fault,
e select for replacement one of its frames

e select for replacement a frame from a process with
lower priority number

; “”‘.‘\
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S5 Global vs. Local Allocation

B Global replacement — process selects a replacement
frame from the set of all frames; one process can take a
frame from another

e But then process execution time can vary greatly, no
control over its page-fault rate

e But greater throughput so more common

®m | ocal replacement — each process selects from only its
own set of allocated frames

e More consistent per-process performance
e But possibly underutilized memory

A3
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g Non-Uniform Memory Access

m So far all memory accessed equally
m Many systems are NUMA — speed of access to memory varies

e Consider system boards containing CPUs and memory,
interconnected over a system bus

m Optimal performance comes from allocating memory “close to” the CPU
on which the thread is scheduled

e And modifying the scheduler to schedule the thread on the same
system board when possible

e Solved by Solaris by creating Igroups
» Structure to track CPU / Memory low latency groups
» Used my schedule and pager

» When possible schedule all threads of a process and allocate all
memory for that process within the Igroup
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57 Thrashing

B If a process does not have “enough” pages, the page-fault
rate is very high

e Page fault to get page
e Replace existing frame
e But quickly need replaced frame back
e This leads to:
» Low CPU utilization

» Operating system thinking that it needs to increase the
degree of multiprogramming

» Another process added to the system

B Thrashing = a process is busy swapping pages in an_(gl_wo | /‘»‘
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§ 57 Thrashing (Cont.)

|
| thrashing

.

CPU utilization

degree of multiprogramming

- A
[ v:\ t}
> <
[ 1S
« A
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~4»7  Demand Paging and Thrashing

® Why does demand paging work?
Locality model

e Process migrates from one locality to another
e Localities may overlap

® \Why does thrashing occur?
Y. size of locality > total memory size

e Limit effects by using local or priority page replacement
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g5 Working-Set Model

B A = working-set window = a fixed number of page references
Example: 10,000 instructions

m WSS, (working set of Process P;) =
total number of pages referenced in the most recent A (varies in time)

e if A too small will not encompass entire locality
e if Atoo large will encompass several localities
e if A =00 = will encompass entire program
m D =X WSS, = total demand frames
e Approximation of locality
if D >m = Thrashing
Policy if D > m, then suspend or swap out one of the processes

page reference table
...2615777751623412344434344413234443444...

WS(t,) = {1,2,5,6,7} WS(t,) = {3,4}
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457 Keeping Track of the Working Set

m Approximate with interval timer + a reference bit
®m Example: A = 10,000
e Timer interrupts after every 5000 time units
e Keep in memory 2 bits for each page

e Whenever a timer interrupts copy and sets the values of all
reference bits to O

e |f one of the bits in memory = 1 = page in working set
® Why is this not completely accurate?
B Improvement = 10 bits and interrupt every 1000 time units

; “”‘.‘\

) ‘T‘}'.{

AP
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v o Page-Fault Frequency

® More direct approach than WSS

B Establish “acceptable” page-fault frequency (PFF)
rate and use local replacement policy

e If actual rate too low, process loses frame
e If actual rate too high, process gains frame

A

2 increase number
- of frames
o]
e upper bound
o)
o
©
Q.
lower bound
decrease number
of frames

\ 4

number of frames

& - ?ti\ “}
‘v%;}\\/
S’

4 ‘V‘
%

“ PUL
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{;‘i Working Sets and Page Fault Rates

B Direct relationship between working set of a process and

its page-fault rate
® Working set changes over time
m Peaks and valleys over time

working set
1
page
fault
rate
0
time

a ' »' v‘. \
» ‘}P‘; % S
-
4 Ct
a ‘: 2
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55 Memory-Mapped Files

Memory-mapped file 1/O allows file I/O to be treated as routine memory
access by mapping a disk block to a page in memory

A file is initially read using demand paging

e A page-sized portion of the file is read from the file system into a
physical page

e Subsequent reads/writes to/from the file are treated as ordinary
memory accesses

Simplifies and speeds file access by driving file I/0 through memory
rather than read () and write () system calls

Also allows several processes to map the same file allowing the pages
iIn memory to be shared

But when does written data make it to disk?
e Periodically and / or at file close () time

e For example, when the pager scans for dirty pages /f;:\\‘
Se— -«W

Ay



»,";15 Q Memory-Mapped File Technique for all /O

B Some OSes uses memory mapped files for standard I/O

B Process can explicitly request memory mapping a file via mmap ()

system call
e Now file mapped into process address space
For standard I/O (open (), read(), write(), close()), mmap
anyway
e But map file into kernel address space
e Process still does read() and write()
» Copies data to and from kernel space and user space
e Uses efficient memory management subsystem
» Avoids needing separate subsystem
COW can be used for read/write non-shared pages

Memory mapped files can be used for shared memory (although agaiam,
via separate system calls) SN %}

Ay
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(P Memory Mapped Files
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&g,./ Shared Memory via Memory-Mapped I/O

process;

shared
memory
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file
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4»7 Shared Memory in Windows API

he

B First create a file mapping for file to be mapped

e Then establish a view of the mapped file in process’s
virtual address space

B Consider producer / consumer

e Producer create shared-memory object using memory
mapping features

e Openfile via CreateFile (), returninga HANDLE

e Create mapping via CreateFileMapping () creating
a named shared-memory object

e Create view via MapViewOfFile ()

B Sample code in Textbook

O\
o2 "‘ AL h
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G5 Allocating Kernel Memory

B Treated differently from user memory
m Often allocated from a free-memory pool
e Kernel requests memory for structures of varying sizes
e Some kernel memory needs to be contiguous
» |.e. for device I/O
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S Buddy System

Allocates memory from fixed-size segment consisting of physically-
contiguous pages

Memory allocated using power-of-2 allocator
e Satisfies requests in units sized as power of 2
e Request rounded up to next highest power of 2

e When smaller allocation needed than is available, current chunk split
Into two buddies of next-lower power of 2

» Continue until appropriate sized chunk available
For example, assume 256KB chunk available, kernel requests 21KB
e Splitinto A, .4 Ag Of 128KB each
» One further divided into B, and By of 64KB

One further into C, and Cy of 32KB each — one used to satisfy
request

B Advantage — quickly coalesce unused chunks into larger chunk m

Disadvantage - fragmentation ‘Fa



Buddy System Allocator
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e $r7 Slab Allocator

Alternate strategy

Slab is one or more physically contiguous pages
Cache consists of one or more slabs

€

Single cache for each unigue kernel data structure

e Each cache filled with objects — instantiations of the
data structure

When cache created, filled with objects marked as free
B When structures stored, objects marked as used

m If slab is full of used objects, next object allocated from
empty slab

e If no empty slabs, new slab allocated

®m Benefits include no fragmentation, fast memory request/ﬂ.
satisfaction

‘q




S Slab Allocation
kernel objects caches slabs
— /, ‘\
3-KB | — N
objects i
~~o physically
B s = contiguous
-7 pages
\ —/)
7-KB / _
objects T -
/ ______ .
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<57 Slab Allocator in Linux

B For example process descriptor is of type struct task struct

m Approx 1.7KB of memory
m New task -> allocate new struct from cache
e Will use existing free struct task struct
m Slab can be in three possible states
1. Full — all used
2. Empty — all free
3. Partial — mix of free and used
m Upon request, slab allocator
1. Uses free struct in partial slab
2. If none, takes one from empty slab
3. If no empty slab, create new empty




S5 Slab Allocator in Linux (Cont.)

m Slab started in Solaris, now wide-spread for both kernel
mode and user memory Iin various OSes

B Linux 2.2 had SLAB, now has both SLOB and SLUB
allocators

e SLOB for systems with limited memory

» Simple List of Blocks — maintains 3 list objects for
small, medium, large objects

e SLUB is performance-optimized SLAB removes per-CPU
gueues, metadata stored in page structure

" /-%Ca .)\‘4
U A#Va
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g7 Other Considerations -- Prepaging

B Prepaging

e To reduce the large number of page faults that occurs at
process startup

e Prepage all or some of the pages a process will need,
before they are referenced

e But if prepaged pages are unused, I/O and memory was
wasted

e Assume s pages are prepaged and a of the pages is
used

» Is cost of s * a save pages faults > or < than the cost
of prepaging s * (1- a) unnecessary pages”?

» a near zero = prepaging loses <

[ B
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g Other Issues — Page Size

B Sometimes OS designers have a choice
e Especially if running on custom-built CPU
B Page size selection must take into consideration:
e Fragmentation
e Page table size
e Resolution
e |/O overhead
e Number of page faults
e Locality
e TLB size and effectiveness

B Always power of 2, usually in the range 212 (4,096 bytes) to 222
(4,194,304 bytes)

® On average, growing over time
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L Other Issues — TLB Reach

® TLB Reach - The amount of memory accessible from the TLB
m TLB Reach = (TLB Size) X (Page Size)

m Ideally, the working set of each process is stored in the TLB
e Otherwise there is a high degree of page faults

B Increase the Page Size

e This may lead to an increase in fragmentation as not all applications
require a large page size

® Provide Multiple Page Sizes

'\

e This allows applications that require larger page sizes the /-3’“1
opportunity to use them without an increase in fragmentation '
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&a‘:—“‘ﬁ Other Issues — Program Structure

B Program structure
e 1int[128,128] data;
e Each row is stored in one page

e Program 1

for (3 = 0; 7 <128; j++)
for (1 = 0; 1 < 128; i++)
atali,3j] = 0;

128 x 128 = 16,384 page faults

e Program 2

128 page faults

/ DS
“« AP
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*;”;‘i Other Issues — I/O interlock

m |/O Interlock — Pages must
sometimes be locked into
memory

B Consider I/O - Pages that are
used for copying a file from a
device must be locked from
being selected for eviction by
a page replacement algorithm

B Pinning of pages to lock into
memory
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End of Chapter 9
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