Chapter 7: Deadlocks

Operating System Concepts — 9t" Edition Silberschatz, Galvin and Gagnhe ©2013

g Chapter 7: Deadlocks

System Model

Deadlock Characterization
Methods for Handling Deadlocks
Deadlock Prevention

Deadlock Avoidance

Deadlock Detection

Recovery from Deadlock

o . ‘E,“‘}
X . A
4 ‘
\ 3 >
“l A9%

Operating System Concepts — 9t Edition 7.2 Silberschatz, Galvin and Gagne ©2013

™
‘T T

" Chapter Objectives

B To develop a description of deadlocks, which prevent sets
of concurrent processes from completing their tasks

®m To present a number of different methods for preventing or
avoiding deadlocks in a computer system

=
,ﬂm.&

G System Model

B System consists of resources
B Resource types R, R,, .. ., R,
CPU cycles, memory space, I/O devices
m Each resource type R, has W, instances.
B Each process utilizes a resource as follows:
® request
® use
e release

& - ?ti\ “}
. " {4/}‘“;;3\/
Sy’
4 ‘V‘
%
“l AP

N
TR
> rl!‘."‘bp-i

g Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

B Mutual exclusion: only one process at a time can use a
resource

m Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes

B No preemption: aresource can be released only voluntarily by
the process holding it, after that process has completed its task

m Circular wait: there exists a set {P,, P4, -.., P,} of waiting
processes such that P, is waiting for a resource that is held by P,
P, is waiting for a resource that is held by P,, ..., P,_; Is waiting
for a resource that is held by P, and P, is waiting for a resource
that is held by P,,.

" /-%Ca ~»\=l

A

Silberschatz, Galvin and Gaghe ©2013

Operating System Concepts — 9t" Edition 7.5

)
R
<R, l

o

Sy Deadlock with Mutex Locks

he

®m Deadlocks can occur via system calls, locking, etc.

®m Deadlock — two or more processes are waiting
iIndefinitely for an event that can be caused by only
one of the waiting processes

B Let Sand Q be two semaphores initialized to 1

wait(S) ; wait (Q) ;
wait(Q) ; wait(S);
signal (S) ; signal (Q) ;
signal (Q) ; signal (S) ;

-t R >(<
)
- /‘3’.: N |
7 <
A _‘: 3

Silberschatz, Galvin and Gaghe ©2013

Operating System Concepts — 9t" Edition 7.6

=

SFF Deadlock Example

\
A\,

/* thread one runs 1in this function */

void *do work one(void *param)
{

pthread mutex lock(&first mutex);
pthread mutex lock(&second mutex);

/** * Do some work */
pthread mutex unlock (&second mutex) ;

pthread mutex unlock (&first mutex);
pthread exit (0);

}

/* thread two runs in this function */

void *do work two(void *param)
{

pthread mutex lock(&second mutex);
pthread mutex lock(&first mutex);

/** * Do some work */
pthread mutex unlock (&first mutex);

pthread mutex unlock (&second mutex);

pthread exit (0);

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 7.7

«§%7 Deadlock Example with Lock Ordering

void transaction (Account from, Account to, double amount)
{
mutex lockl, lock2;
lockl = get lock(from);
lock2 = get lock(to);
acquire (lockl) ;
acquire (lock2) ;
withdraw (from, amount) ;
deposit (to, amount);
release (lock?2);
release (lockl);

}

Transactions 1 and 2 execute concurrently. Transaction 1 transfers $25
from account A to account B, and Transaction 2 transfers $50 from account
B to account A

A\ |
~

\\
3 \
W<
o
il

> .
S, -
“«

Operating System Concepts — 9t" Edition 7.8 Silberschatz, Galvin and Gagne ©2013

[=
gr T

<§F Resource-Allocation Graph

A set of vertices V and a set of edges E.

® V is partitioned into two types:

e P={P, P, ..., P}, the set consisting of all the
processes in the system

e R={R,, R,, ..., R}, the set consisting of all resource
types in the system

B request edge — directed edge P, — R;

B assignment edge — directed edge R; — P;

& - ?ti\ “}

_ » lv%}\}\\/
Sy’

4 ‘V‘

%

“ PUL

Operating System Concepts — 9th Edition 7.9 Silberschatz, Galvin and Gagne ©2013

o
Y,

S _
g%/ Resource-Allocation Graph (Cont.)

. g
L‘ s

B Process

O

B Resource Type with 4 instances

On0
On0

® P, requests instance of R,

® P;is holding an instance of R;

oo
oo

R

b
oo

Operating System Concepts — 9t" Edition 7.10

Py

Silberschatz, Galvin and Gagne ©2013

o o
o

R, o
R,

Operating System Concepts — 9t Edition 7.11 Silberschatz, Galvin and Gagne ©2013

/
®
@ @
®
R, ©
R,

S
Ve

Operating System Concepts — 9t Edition 7.12 Silberschatz, Galvin and Gagne ©2013

«§%7 Graph With A Cycle But No Deadlock

e\ 7

S

v

Operating System Concepts — 9t Edition 7.13 Silberschatz, Galvin and Gagne ©2013

=

m-“”'"-”"k

G5 Basic Facts

®m |f graph contains no cycles = no deadlock
m |f graph contains a cycle =

e if only one instance per resource type, then
deadlock

e if several instances per resource type, possibility of
deadlock

Operating System Concepts — 9th Edition 7.14 Silberschatz, Galvin and Gagne ©2013

‘{J—i Methods for Handling Deadlocks

® Ensure that the system will never enter a deadlock
state:

e Deadlock prevention
e Deadlock avoidence

m Allow the system to enter a deadlock state and then
recover

® [gnore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
iIncluding UNIX

SRY A
XN "‘ e\ ‘\
/}ﬁ« M
!
A APK

Operating System Concepts — 9t Edition 7.15 Silberschatz, Galvin and Gagne ©2013

L N

=

(e

<$57 Deadlock Prevention

Restrain the ways request can be made

® Mutual Exclusion — not required for sharable resources
(e.g., read-only files); must hold for non-sharable resources

®m Hold and Wait — must guarantee that whenever a process
requests a resource, it does not hold any other resources

e Require process to request and be allocated all its
resources before it begins execution, or allow process
to request resources only when the process has none
allocated to it.

e Low resource utilization; starvation possible

)

A3

Silberschatz, Galvin and Gaghe ©2013

Operating System Concepts — 9t" Edition 7.16

G Deadlock Prevention (Cont.)

® No Preemption —

e |f a process that is holding some resources requests
another resource that cannot be immediately allocated
to it, then all resources currently being held are released

e Preempted resources are added to the list of resources
for which the process is waiting

e Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting

®m Circular Wait — impose a total ordering of all resource
types, and require that each process requests resources in
an increasing order of enumeration

S

Operating System Concepts — 9t Edition 7.17 Silberschatz, Galvin and Gagne ©2013

N

(7>
> nw.'%,.,l

o Deadlock Avoidance

Requires that the system has some additional a priori
Information available

® Simplest and most useful model requires that each
process declare the maximum number of resources of
each type that it may need

B The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can
never be a circular-wait condition

® Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes

)

b

Operating System Concepts — 9t Edition 7.18 Silberschatz, Galvin and Gagne ©2013

&t;f Safe State

® When a process requests an available resource, system must decide if
Immediate allocation leaves the system in a safe state

m System is in safe state if there exists a sequence <P,, P,, ..., P> of
ALL the processes in the systems such that for each P;, the
resources that P, can still request can be satisfied by currently
available resources + resources held by all the P;, with | <

®m Thatis:

e If P, resource needs are not immediately available, then P, can wait
until all P; have finished

e When P; is finished, P; can obtain needed resources, execute,
return allocated resources, and terminate

e When P, terminates, P, ,, can obtain its needed resources, and so
on

m-_,/‘ ;.;‘}. \\l

Silberschatz, Galvin and Gaghe ©2013

Operating System Concepts — 9t" Edition 7.19

m |f a system is in safe state = no deadlocks
m If a system Is in unsafe state = possibility of deadlock

B Avoidance = ensure that a system will never enter an
unsafe state.

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 7.20

o
Y,

L

«g¥7 Safe, Unsafe, Deadlock State

Operating System Concepts — 9t" Edition

deadlock

7.21

unsafe

safe

X 5\\\!\\\
S _qz,\ X
A ﬂ.‘"

Silberschatz, Galvin and Gagne ©2013

g5 Avoidance Algorithms

' 4

B Single instance of a resource type
e Use a resource-allocation graph

B Multiple instances of a resource type
e Use the banker’ s algorithm

~ \‘:\ A\
S t
-
i ‘?(B
A 29X

Operating System Concepts — 9t" Edition 7.22 Silberschatz, Galvin and Gagne ©2013

o
TR
> nﬂ.‘““bi

~$»/ Resource-Allocation Graph Scheme

m Claim edge P; — R;indicated that process P; may request
resource R;; represented by a dashed line

B Claim edge converts to request edge when a process
reguests a resource

B Request edge converted to an assignment edge when the
resource Is allocated to the process

B \When a resource is released by a process, assignment
edge reconverts to a claim edge

B Resources must be claimed a priori in the system

A A%

&3)—/ Resource-Allocation Graph

R,

Operating System Concepts — 9t Edition 7.24 Silberschatz, Galvin and Gagne ©2013

@“’P‘“ Unsafe State In Resource-Allocation Graph

A

Operating System Concepts — 9t Edition 7.25 Silberschatz, Galvin and Gagne ©2013

™
gr T

i Resource-Allocation Graph Algorithm

® Suppose that process P; requests a resource R;

B The request can be granted only if converting the
reguest edge to an assignment edge does not result in
the formation of a cycle in the resource allocation
graph

& - ?ti\ “}

_ » lv%}\}\\/
Sy’

4 ‘V‘

%

“ PUL

Operating System Concepts — 9th Edition 7.26 Silberschatz, Galvin and Gagne ©2013

o S Banker’s Algorithm

® Multiple instances
m Each process must a priori claim maximum use
B \When a process requests a resource it may have to wait

® When a process gets all its resources it must return them
In a finite amount of time

o - =X “}

- ,,/‘)‘,,H\/
Sy’

4 ‘V‘

5

“ PUL

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 7.27

=

] , .
“$»7 Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.
® Available: Vector of length m. If available [j] = k, there are k instances

of resource type R; available

B Max: n x m matrix. If Max [i,j] = k, then process P, may request at most
k instances of resource type R;

m Allocation: n x m matrix. If Allocation]i,j] = k then P; is currently
allocated k instances of R;

® Need: nx m matrix. If Need]i,j] = k, then P; may need k more instances
of R;to complete its task

Need [i,]] = Max]i,]] — Allocation [i,]] SNy
e SN

A3

e

Operating System Concepts — 9t Edition 7.28 Silberschatz, Galvin and Gagne ©2013

=

>
SN

(e

% Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available
Finish [i] =falsefori=0,1,...,n-1

2. Find an i such that both:
(a) Finish [i] = false
(b) Need; < Work
If no such i exists, go to step 4

3. Work = Work + Allocation;
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state _

O\
o2 "‘ AL h
/‘},;; D)
a
/e PAN

Silberschatz, Galvin and Gaghe ©2013

Operating System Concepts — 9t" Edition 7.29

=

- :
«4%7 Resource-Request Algorithm for Process P,

" 4

Request; = request vector for process P;. If Request; [j] = k then
process P; wants k instances of resource type R;

1. If Request; < Need; go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim

2. If Request; < Available, go to step 3. Otherwise P; must wait,
since resources are not available

3. Pretend to allocate requested resources to P; by modifying the
state as follows:

Available = Available — Request;
Allocation; = Allocation; + Request;;
Need,; = Need, — Request;;

e If safe = the resources are allocated to P;

e |f unsafe = P, must wait, and the old resource-allocation state
IS restored

- /"&,-ow‘

Ay

Operating System Concepts — 9t Edition 7.30 Silberschatz, Galvin and Gagne ©2013

4
#

«¢%7 Example of Banker’s Algorithm

m 5 processes P, through P,;
3 resource types:
A (10 instances), B (5instances), and C (7 instances)
® Snapshot at time T

Allocation Max Available
ABC ABC ABC
Po 010 753 332
P, 200 322
P, 302 902
P, 211 222
P, 002 433

\'n\“
N ‘& 3
o <
A ‘::' 2

Operating System Concepts — 9t Edition 7.31 Silberschatz, Galvin and Gagne ©2013

> Example (Cont.)

B The content of the matrix Need is defined to be Max — Allocation

Need

ABC
P, 743
P, 122
P, 600
P, 011
P, 431

® The system is in a safe state since the sequence < P,, P;, P,, P,, P>
satisfies safety criteria

A\
NS A
by
<
iU “ Y 2\
“l PR

Operating System Concepts — 9t Edition 7.32 Silberschatz, Galvin and Gagne ©2013

=

-

577 Example: P, Request (1,0,2)

m Check that Request < Available (that is, (1,0,2) < (3,3,2) = true

Allocation Need Available
ABC ABC ABC
P, 010 743 230
P, 302 020
P, 302 600
P, 211 011
P, 002 431

m Executing safety algorithm shows that sequence < P,, P;, P,, Py, P,>
satisfies safety requirement

m Can request for (3,3,0) by P, be granted?

m Can request for (0,2,0) by P, be granted?

g5 Deadlock Detection

m Allow system to enter deadlock state
m Detection algorithm

B Recovery scheme

‘
‘\\\“«k
W
»

> . Y)
A ‘“

5
<A

Operating System Concepts — 9t" Edition 7.34 Silberschatz, Galvin and Gagne ©2013

=

-

- -
«4%7 Single Instance of Each Resource Type

® Maintain wait-for graph
e Nodes are processes
e P;— P; If P;is waiting for P,

m Periodically invoke an algorithm that searches for a cycle in the
graph. If there is a cycle, there exists a deadlock

B An algorithm to detect a cycle in a graph requires an order of n?
operations, where n is the number of vertices in the graph

NS \“‘}
e Ct
A« ‘:

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 7.35

‘m%\-—f Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

S “‘\ Al
DY :E\ ‘\
Vi “5’

A <yl

Operating System Concepts — 9t Edition 7.36 Silberschatz, Galvin and Gagne ©2013

N

x’""‘"‘i)
~$»/ Several Instances of a Resource Type

m Available: A vector of length m indicates the number of
available resources of each type

m Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each
process

B Reqguest: An n X m matrix indicates the current request
of each process. If Request [i][]] = k, then process P; is
requesting k more instances of resource type R;.

e /‘hiﬂ ~.\\=1
U Q vy A

Operating System Concepts — 9t Edition 7.37 Silberschatz, Galvin and Gagne ©2013

[=
gr T

N Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively
Initialize:

(a) Work = Available

(b) Fori=1,2, ..., n, if Allocation; # 0, then
Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i1 such that both:
(a) Finishl[i] == false
(b) Request; < Work

If no such i exists, go to step 4

o - =X “}

- ,,/‘)‘,,H\/
Sy’

4 ‘V‘

5

“ PUL

Operating System Concepts — 9th Edition 7.38 Silberschatz, Galvin and Gagne ©2013

m;;"ﬁ Detection Algorithm (Cont.)

3. Work = Work + Allocation;
Finish[i] = true
go to step 2

4. If Finishli] == false, for some i, 1 <1 < n, then the system
IS In deadlock state. Moreover, if Finish[i] == false, then P,
IS deadlocked

Algorithm requires an order of O(m X n?) operations
to detect whether the system is in deadlocked state

R \‘:\ I\
S t
-
i ‘?(B
A N

Operating System Concepts — 9t Edition 7.39 Silberschatz, Galvin and Gagne ©2013

“§%/ Example of Detection Algorithm

m Five processes P, through P,; three resource types
A (7 instances), B (2 instances), and C (6 instances)

® Snapshot at time T:
Allocation Request Available

ABC ABC ABC
P, 010 000 000
P, 200 202
P, 303 000
P, 211 100
P, 002 002

m Sequence <P, P,, P;, P,, P,> will result in Finish[i] = true for all i

S
e <
WS

“l AP

Operating System Concepts — 9t Edition 7.40 Silberschatz, Galvin and Gagne ©2013

gv/ Example (Cont.)

m P, requests an additional instance of type C

Reguest

ABC
P, 000
P, 202
P, 001
P, 100
P, 002

m State of system?

e Can reclaim resources held by process P, but insufficient
resources to fulfill other processes; requests

e Deadlock exists, consisting of processes P,, P,, P;, and P,

Y e ‘E;‘
Yy <
WS

“l A%

Operating System Concepts — 9t Edition 7.41 Silberschatz, Galvin and Gagne ©2013

" - :
t«,,,— Detection-Algorithm Usage

® When, and how often, to invoke depends on:
e How often a deadlock is likely to occur?
e How many processes will need to be rolled back?

» one for each disjoint cycle

m |f detection algorithm is invoked arbitrarily, there may be many
cycles in the resource graph and so we would not be able to tell

which of the many deadlocked processes “caused” the
deadlock.

Silberschatz, Galvin and Gaghe ©2013

Operating System Concepts — 9t" Edition 7.42

-,
D

. L
wgw’ Recovery from Deadlock: Process Termination

®m Abort all deadlocked processes

®m Abort one process at a time until the deadlock cycle is
eliminated

® |In which order should we choose to abort?
1. Priority of the process

2. How long process has computed, and how much longer to
completion

Resources the process has used
Resources process needs to complete
How many processes will need to be terminated

o o~ ®

Is process interactive or batch?

Operating System Concepts — 9t Edition 7.43 Silberschatz, Galvin and Gagne ©2013

“g»’ Recovery from Deadlock: Resource Preemption

7'

m Selecting a victim — minimize cost

® Rollback — return to some safe state, restart process for that state

B Starvation — same process may always be picked as victim, include
number of rollback in cost factor

[v:\ t}
> <
[1S
“« A9%

Operating System Concepts — 9t" Edition 7.44 Silberschatz, Galvin and Gagne ©2013

End of Chapter 7

Operating System Concepts — 9t" Edition Silberschatz, Galvin and Gagnhe ©2013

