
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 7: Deadlocks

7.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 7: Deadlocks

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock

7.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter Objectives

 To develop a description of deadlocks, which prevent sets

of concurrent processes from completing their tasks

 To present a number of different methods for preventing or

avoiding deadlocks in a computer system

7.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Model

 System consists of resources

 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

 Each resource type Ri has Wi instances.

 Each process utilizes a resource as follows:

 request

 use

 release

7.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Characterization

 Mutual exclusion: only one process at a time can use a

resource

 Hold and wait: a process holding at least one resource is

waiting to acquire additional resources held by other processes

 No preemption: a resource can be released only voluntarily by

the process holding it, after that process has completed its task

 Circular wait: there exists a set {P0, P1, …, Pn} of waiting

processes such that P0 is waiting for a resource that is held by P1,

P1 is waiting for a resource that is held by P2, …, Pn–1 is waiting

for a resource that is held by Pn, and Pn is waiting for a resource

that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

7.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock with Mutex Locks

 Deadlocks can occur via system calls, locking, etc.

 Deadlock – two or more processes are waiting
indefinitely for an event that can be caused by only
one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

7.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Example

/* thread one runs in this function */

void *do_work_one(void *param)

{

pthread_mutex_lock(&first_mutex);

pthread_mutex_lock(&second_mutex);

/** * Do some work */

pthread_mutex_unlock(&second_mutex);

pthread_mutex_unlock(&first_mutex);

pthread_exit(0);

}

/* thread two runs in this function */

void *do_work_two(void *param)

{

pthread_mutex_lock(&second_mutex);

pthread_mutex_lock(&first_mutex);

/** * Do some work */

pthread_mutex_unlock(&first_mutex);

pthread_mutex_unlock(&second_mutex);

pthread_exit(0);

}

7.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Example with Lock Ordering

void transaction(Account from, Account to, double amount)

{

mutex lock1, lock2;

lock1 = get_lock(from);

lock2 = get_lock(to);

acquire(lock1);

acquire(lock2);

withdraw(from, amount);

deposit(to, amount);

release(lock2);

release(lock1);

}

Transactions 1 and 2 execute concurrently. Transaction 1 transfers $25

from account A to account B, and Transaction 2 transfers $50 from account

B to account A

7.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph

 V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system

 R = {R1, R2, …, Rm}, the set consisting of all resource

types in the system

 request edge – directed edge Pi  Rj

 assignment edge – directed edge Rj  Pi

A set of vertices V and a set of edges E.

7.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph (Cont.)

 Process

 Resource Type with 4 instances

 Pi requests instance of Rj

 Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

7.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of a Resource Allocation Graph

7.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource Allocation Graph With A Deadlock

7.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Graph With A Cycle But No Deadlock

7.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Facts

 If graph contains no cycles  no deadlock

 If graph contains a cycle 

 if only one instance per resource type, then

deadlock

 if several instances per resource type, possibility of

deadlock

7.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Methods for Handling Deadlocks

 Ensure that the system will never enter a deadlock

state:

 Deadlock prevention

 Deadlock avoidence

 Allow the system to enter a deadlock state and then

recover

 Ignore the problem and pretend that deadlocks never

occur in the system; used by most operating systems,

including UNIX

7.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Prevention

 Mutual Exclusion – not required for sharable resources

(e.g., read-only files); must hold for non-sharable resources

 Hold and Wait – must guarantee that whenever a process

requests a resource, it does not hold any other resources

 Require process to request and be allocated all its

resources before it begins execution, or allow process

to request resources only when the process has none

allocated to it.

 Low resource utilization; starvation possible

Restrain the ways request can be made

7.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Prevention (Cont.)

 No Preemption –

 If a process that is holding some resources requests

another resource that cannot be immediately allocated

to it, then all resources currently being held are released

 Preempted resources are added to the list of resources

for which the process is waiting

 Process will be restarted only when it can regain its old

resources, as well as the new ones that it is requesting

 Circular Wait – impose a total ordering of all resource

types, and require that each process requests resources in

an increasing order of enumeration

7.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Avoidance

 Simplest and most useful model requires that each

process declare the maximum number of resources of

each type that it may need

 The deadlock-avoidance algorithm dynamically examines

the resource-allocation state to ensure that there can

never be a circular-wait condition

 Resource-allocation state is defined by the number of

available and allocated resources, and the maximum

demands of the processes

Requires that the system has some additional a priori

information available

7.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Safe State

 When a process requests an available resource, system must decide if

immediate allocation leaves the system in a safe state

 System is in safe state if there exists a sequence <P1, P2, …, Pn> of

ALL the processes in the systems such that for each Pi, the

resources that Pi can still request can be satisfied by currently

available resources + resources held by all the Pj, with j < I

 That is:

 If Pi resource needs are not immediately available, then Pi can wait

until all Pj have finished

 When Pj is finished, Pi can obtain needed resources, execute,

return allocated resources, and terminate

 When Pi terminates, Pi +1 can obtain its needed resources, and so

on

7.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Facts

 If a system is in safe state  no deadlocks

 If a system is in unsafe state  possibility of deadlock

 Avoidance  ensure that a system will never enter an

unsafe state.

7.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Safe, Unsafe, Deadlock State

7.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Avoidance Algorithms

 Single instance of a resource type

 Use a resource-allocation graph

 Multiple instances of a resource type

 Use the banker’s algorithm

7.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph Scheme

 Claim edge Pi  Rj indicated that process Pj may request

resource Rj; represented by a dashed line

 Claim edge converts to request edge when a process

requests a resource

 Request edge converted to an assignment edge when the

resource is allocated to the process

 When a resource is released by a process, assignment

edge reconverts to a claim edge

 Resources must be claimed a priori in the system

7.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph

7.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Unsafe State In Resource-Allocation Graph

7.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph Algorithm

 Suppose that process Pi requests a resource Rj

 The request can be granted only if converting the

request edge to an assignment edge does not result in

the formation of a cycle in the resource allocation

graph

7.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Banker’s Algorithm

 Multiple instances

 Each process must a priori claim maximum use

 When a process requests a resource it may have to wait

 When a process gets all its resources it must return them

in a finite amount of time

7.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Data Structures for the Banker’s Algorithm

 Available: Vector of length m. If available [j] = k, there are k instances

of resource type Rj available

 Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most

k instances of resource type Rj

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently

allocated k instances of Rj

 Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances

of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

7.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:

(a) Finish [i] = false

(b) Needi  Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

7.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi. If Requesti [j] = k then
process Pi wants k instances of resource type Rj

1. If Requesti  Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim

2. If Requesti  Available, go to step 3. Otherwise Pi must wait,
since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the
state as follows:

Available = Available – Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

 If safe  the resources are allocated to Pi

 If unsafe  Pi must wait, and the old resource-allocation state
is restored

7.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Banker’s Algorithm

 5 processes P0 through P4;

3 resource types:

A (10 instances), B (5instances), and C (7 instances)

 Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

7.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example (Cont.)

 The content of the matrix Need is defined to be Max – Allocation

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

 The system is in a safe state since the sequence < P1, P3, P4, P2, P0>

satisfies safety criteria

7.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example: P1 Request (1,0,2)

 Check that Request  Available (that is, (1,0,2)  (3,3,2)  true

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

 Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>

satisfies safety requirement

 Can request for (3,3,0) by P4 be granted?

 Can request for (0,2,0) by P0 be granted?

7.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Detection

 Allow system to enter deadlock state

 Detection algorithm

 Recovery scheme

7.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Single Instance of Each Resource Type

 Maintain wait-for graph

 Nodes are processes

 Pi  Pj if Pi is waiting for Pj

 Periodically invoke an algorithm that searches for a cycle in the

graph. If there is a cycle, there exists a deadlock

 An algorithm to detect a cycle in a graph requires an order of n2

operations, where n is the number of vertices in the graph

7.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

7.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Several Instances of a Resource Type

 Available: A vector of length m indicates the number of

available resources of each type

 Allocation: An n x m matrix defines the number of

resources of each type currently allocated to each

process

 Request: An n x m matrix indicates the current request

of each process. If Request [i][j] = k, then process Pi is

requesting k more instances of resource type Rj.

7.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively

Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi  0, then

Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti  Work

If no such i exists, go to step 4

7.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Detection Algorithm (Cont.)

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1  i  n, then the system
is in deadlock state. Moreover, if Finish[i] == false, then Pi

is deadlocked

Algorithm requires an order of O(m x n2) operations

to detect whether the system is in deadlocked state

7.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Detection Algorithm

 Five processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances)

 Snapshot at time T0:

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

 Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

7.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example (Cont.)

 P2 requests an additional instance of type C

Request

A B C

P0 0 0 0

P1 2 0 2

P2 0 0 1

P3 1 0 0

P4 0 0 2

 State of system?

 Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests

 Deadlock exists, consisting of processes P1, P2, P3, and P4

7.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Detection-Algorithm Usage

 When, and how often, to invoke depends on:

 How often a deadlock is likely to occur?

 How many processes will need to be rolled back?

one for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there may be many

cycles in the resource graph and so we would not be able to tell

which of the many deadlocked processes “caused” the

deadlock.

7.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Recovery from Deadlock: Process Termination

 Abort all deadlocked processes

 Abort one process at a time until the deadlock cycle is

eliminated

 In which order should we choose to abort?

1. Priority of the process

2. How long process has computed, and how much longer to

completion

3. Resources the process has used

4. Resources process needs to complete

5. How many processes will need to be terminated

6. Is process interactive or batch?

7.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Recovery from Deadlock: Resource Preemption

 Selecting a victim – minimize cost

 Rollback – return to some safe state, restart process for that state

 Starvation – same process may always be picked as victim, include

number of rollback in cost factor

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 7

