
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: Process

Synchronization

5.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: Process Synchronization

 Background

 The Critical-Section Problem

 Peterson’s Solution

 Synchronization Hardware

 Mutex Locks

 Semaphores

 Classic Problems of Synchronization

 Monitors

 Synchronization Examples

 Alternative Approaches

5.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To present the concept of process synchronization.

 To introduce the critical-section problem, whose

solutions can be used to ensure the consistency of

shared data

 To present both software and hardware solutions of the

critical-section problem

 To examine several classical process-synchronization

problems

 To explore several tools that are used to solve process

synchronization problems

5.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

 Processes can execute concurrently

 May be interrupted at any time, partially completing execution

 Concurrent access to shared data may result in data

inconsistency

 Maintaining data consistency requires mechanisms to ensure the

orderly execution of cooperating processes

 Illustration of the problem:

Suppose that we wanted to provide a solution to the consumer-

producer problem that fills all the buffers. We can do so by having

an integer counter that keeps track of the number of full buffers.

Initially, counter is set to 0. It is incremented by the producer

after it produces a new item to the buffer and is decremented by the

consumer after it consumes an item from the buffer.

5.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer

while (true) {

/* produce an item in next

produced */

while (counter == BUFFER_SIZE)

;

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

5.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next

consumed */

}

5.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Condition

 counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

 counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2

 Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

5.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1}

 Each process has critical section segment of code

 Process may be changing common variables, updating

table, writing file, etc

 When one process in critical section, no other may be in

its critical section

 Critical section problem is to design protocol to solve this

 Each process must ask permission to enter critical section

in entry section, may follow critical section with exit

section, then remainder section

5.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section

 General structure of process Pi

5.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, then

no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there

exist some processes that wish to enter their critical section, then the

selection of the processes that will enter the critical section next cannot

be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that

other processes are allowed to enter their critical sections after a

process has made a request to enter its critical section and before that

request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the n processes

5.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical-Section Handling in OS

Two approaches depending on if kernel is

preemptive or non- preemptive

Preemptive – allows preemption of process

when running in kernel mode

Non-preemptive – runs until exits kernel

mode, blocks, or voluntarily yields CPU

Essentially free of race conditions in kernel

mode

5.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution

 Good algorithmic description of solving the problem

 Two process solution

 Assume that the load and store machine-language
instructions are atomic; that is, cannot be interrupted

 The two processes share two variables:

 int turn;

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the
critical section

 The flag array is used to indicate if a process is ready to
enter the critical section. flag[i] = true implies that
process Pi is ready!

5.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

do {

flag[i] = true;

turn = j;

while (flag[j] && turn = = j);

critical section

flag[i] = false;

remainder section

} while (true);

5.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution (Cont.)

 Provable that the three CS requirements are met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

5.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Hardware

 Many systems provide hardware support for implementing
the critical section code.

 All solutions below are based on idea of locking

 Protecting critical regions via locks

 Uniprocessors – could disable interrupts

 Currently running code would execute without preemption

 Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware
instructions

Atomic = non-interruptible

 test memory word and set value

 swap contents of two memory words

5.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

5.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

test_and_set Instruction

Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically

2. Returns the original value of passed parameter

3. Set the new value of passed parameter to “TRUE”.

5.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using test_and_set()

 Shared Boolean variable lock, initialized to FALSE

 Solution:

do {

while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

5.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

compare_and_swap Instruction

Definition:

int compare _and_swap(int *value, int expected, int

new_value) {

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

1. Executed atomically

2. Returns the original value of passed parameter “value”

3. Set the variable “value” the value of the passed parameter “new_value”
but only if “value” ==“expected”. That is, the swap takes place only under
this condition.

5.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using compare_and_swap

 Shared integer “lock” initialized to 0;

 Solution:

do {

while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

} while (true);

5.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-waiting Mutual Exclusion with test_and_set

do {

waiting[i] = true;

key = true;

while (waiting[i] && key)

key = test_and_set(&lock);

waiting[i] = false;

/* critical section */

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = false;

else

waiting[j] = false;

/* remainder section */

} while (true);

5.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mutex Locks

 Previous solutions are complicated and generally
inaccessible to application programmers

 OS designers build software tools to solve critical section
problem

 Simplest is mutex lock

 Protect a critical section by first acquire() a lock then
release() the lock

 Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic

 Usually implemented via hardware atomic instructions

 But this solution requires busy waiting

 This lock therefore called a spinlock

5.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

acquire() and release()

 acquire() {

while (!available)

; /* busy wait */

available = false;

}

 release() {

available = true;

}

 do {

acquire lock

critical section

release lock

remainder section

} while (true);

5.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore

 Synchronization tool that provides more sophisticated ways (than Mutex
locks) for process to synchronize their activities.

 Semaphore S – integer variable

 Can only be accessed via two indivisible (atomic) operations

 wait() and signal()

 Originally called P() and V()

 Definition of the wait() operation

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

 Definition of the signal() operation

signal(S) {

S++;

}

5.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Usage

 Counting semaphore – integer value can range over an unrestricted domain

 Binary semaphore – integer value can range only between 0 and 1

 Same as a mutex lock

 Can solve various synchronization problems

 Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

 Can implement a counting semaphore S as a binary semaphore

5.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation

 Must guarantee that no two processes can execute the
wait() and signal() on the same semaphore at the

same time

 Thus, the implementation becomes the critical section
problem where the wait and signal code are placed in

the critical section

 Could now have busy waiting in critical section

implementation

But implementation code is short

Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical

sections and therefore this is not a good solution

5.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation with no Busy waiting

 With each semaphore there is an associated waiting queue

 Each entry in a waiting queue has two data items:

 value (of type integer)

 pointer to next record in the list

 Two operations:

 block – place the process invoking the operation on the

appropriate waiting queue

 wakeup – remove one of processes in the waiting queue and

place it in the ready queue

 typedef struct{

int value;

struct process *list;

} semaphore;

5.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}

5.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

 Starvation – indefinite blocking

 A process may never be removed from the semaphore queue in which it is
suspended

 Priority Inversion – Scheduling problem when lower-priority process
holds a lock needed by higher-priority process

 Solved via priority-inheritance protocol

5.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Classical Problems of Synchronization

 Classical problems used to test newly-proposed synchronization

schemes

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

5.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer Problem

 n buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value n

5.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

 The structure of the producer process

do {

...

/* produce an item in next_produced */

...

wait(empty);

wait(mutex);

...

/* add next produced to the buffer */

...

signal(mutex);

signal(full);

} while (true);

5.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

 The structure of the consumer process

Do {

wait(full);

wait(mutex);

...

/* remove an item from buffer to next_consumed */

...

signal(mutex);

signal(empty);

...

/* consume the item in next consumed */

...

} while (true);

5.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem

 A data set is shared among a number of concurrent processes

 Readers – only read the data set; they do not perform any

updates

 Writers – can both read and write

 Problem – allow multiple readers to read at the same time

 Only one single writer can access the shared data at the

same time

 Several variations of how readers and writers are considered –

all involve some form of priorities

 Shared Data

 Data set

 Semaphore rw_mutex initialized to 1

 Semaphore mutex initialized to 1

 Integer read_count initialized to 0

5.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)

 The structure of a writer process

do {

wait(rw_mutex);

...

/* writing is performed */

...

signal(rw_mutex);

} while (true);

5.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)

 The structure of a reader process

do {

wait(mutex);

read_count++;

if (read_count == 1)

wait(rw_mutex);

signal(mutex);

...

/* reading is performed */

...

wait(mutex);

read count--;

if (read_count == 0)

signal(rw_mutex);

signal(mutex);

} while (true);

5.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem

 Philosophers spend their lives alternating thinking and eating

 Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks

(one at a time) to eat from bowl

 Need both to eat, then release both when done

 In the case of 5 philosophers

 Shared data

 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1

5.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm

 The structure of Philosopher i:

do {

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

 What is the problem with this algorithm?

5.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm (Cont.)

 Deadlock handling

 Allow at most 4 philosophers to be sitting

simultaneously at the table.

 Allow a philosopher to pick up the forks only if

both are available (picking must be done in a

critical section.

 Use an asymmetric solution -- an odd-numbered

philosopher picks up first the left chopstick and

then the right chopstick. Even-numbered

philosopher picks up first the right chopstick and

then the left chopstick.

5.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Problems with Semaphores

 Incorrect use of semaphore operations:

 signal (mutex) …. wait (mutex) – violates ME

 wait (mutex) … wait (mutex) – results in deadlock

 Omitting of wait (mutex) or signal (mutex) (or both) –

both ME & deadlock voilation

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 6

