Chapter 6: Process
Synchronization

Operating System Concepts — 9t" Edition Silberschatz, Galvin and Gagnhe ©2013

-,

(e

o Chapter 6: Process Synchronization

B Background

B The Critical-Section Problem

B Peterson’ s Solution

B Synchronization Hardware

B Mutex Locks

B Semaphores

m Classic Problems of Synchronization
B Monitors

B Synchronization Examples

m Alternative Approaches

N 1Y 1)
~ > '-‘ \ ‘\
= N |
8.
« APX

e

S5 Objectives

B To present the concept of process synchronization.

B To introduce the critical-section problem, whose
solutions can be used to ensure the consistency of
shared data

®m To present both software and hardware solutions of the
critical-section problem

® To examine several classical process-synchronization
problems

m To explore several tools that are used to solve process
synchronization problems

m-_,/‘ ;.;‘}. \\l

A

2],
l S

g Background

B Processes can execute concurrently
e May be interrupted at any time, partially completing execution

m Concurrent access to shared data may result in data
Inconsistency

B Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating processes

m |[llustration of the problem:

Suppose that we wanted to provide a solution to the consumer-
producer problem that fills all the buffers. We can do so by having

an integer counter that keeps track of the number of full buffers.
Initially, counter is setto 0. It is incremented by the producer

after it produces a new item to the buffer and is decremented by
consumer after it consumes an item from the buffer. — a%'!,

Operating System Concepts — 9t Edition 5.4 Silberschatz, Galvin and Gagne ©2013

T Producer

while (true) {
/* produce an item in next
produced */

while (counter == BUFFER SIZE)
/* do nothing */
buffer[in] = next produced;
in = (1n + 1) % BUFFER SIZE;
counter++;
} S

BN
A A%

Operating System Concepts — 9t Edition 5.5 Silberschatz, Galvin and Gagne ©2013

GF Consumer

while (true) {
while (counter == 0)
; /* do nothing */
next consumed = buffer|out];

out = (out + 1) % BUFFER SIZE;

counter—--;

/* consume the i1tem 1n next
consumed */

}

SN
i “ v 2
A <A

Operating System Concepts — 9t Edition 5.6 Silberschatz, Galvin and Gagne ©2013

i
1,

> Race Condition

\

<%
\ /1’/: N

' 4

B counter++ could be implemented as

registerl = counter
registerl = registerl + 1
counter = registerl

B counter-- could be implemented as

register2 = counter
register2 = register2 -1
counter = register2

m Consider this execution interleaving with “count = 5” initially:

S0: producer execute registerl = counter {registerl = 5}
S1: producer execute registerl = registerl + 1 {registerl = 6}
S2:. consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 =4}
S4: producer execute counter = registerl {counter = 6}

S5: consumer execute counter = register?2 {counter = 4}

Operating System Concepts — 9t Edition 5.7 Silberschatz, Galvin and Gagne ©2013

)
=< -ré

(e

<$57 Critical Section Problem

m Consider system of n processes {py, P15 --- Pp.1}
B Each process has critical section segment of code

e Process may be changing common variables, updating
table, writing file, etc

e When one process in critical section, no other may be in
Its critical section

m Critical section problem is to design protocol to solve this

®m Each process must ask permission to enter critical section
In entry section, may follow critical section with exit
section, then remainder section

\\
)
o)

o4 '»w"('

A3

e

o Critical Section

m General structure of process P;

do {

entry section

critical section

exit section

remainder section

} while (true);

Operating System Concepts — 9t" Edition 5.9

Silberschatz, Galvin and Gagne ©2013

N

) Solution to Critical-Section Problem

1. Mutual Exclusion - If process P; is executing in its critical section, then
no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next cannot
be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted

® Assume that each process executes at a honzero speed
® No assumption concerning relative speed of the n processes

S\
—— fi& ~.\\=l
o4 “‘.'Z

A3

S

R
<R l

45

$57 Critical-Section Handling in OS

Two approaches depending on if kernel is
preemptive or non- preemptive

® Preemptive — allows preemption of process
when running in kernel mode

®Non-preemptive — runs until exits kernel
mode, blocks, or voluntarily yields CPU

» Essentially free of race conditions in kernel
mode

X \NAY
DI

A0

Operating System Concepts — 9t Edition 5.12 Silberschatz, Galvin and Gagne ©2013

G Peterson’s Solution

® Good algorithmic description of solving the problem
® Two process solution

B Assume that the load and store machine-language
Instructions are atomic; that is, cannot be interrupted

® The two processes share two variables:
® int turn;
® Boolean flag[2]

B The variable turn indicates whose turn it is to enter the
critical section

B The £lag array Is used to indicate if a process is ready to
enter the critical section. flag[i] = true implies that
process P, IS ready! D

S /"5,; .\\‘.“

bR

Operating System Concepts — 9t Edition 5.13 Silberschatz, Galvin and Gagne ©2013

o Algorithm for Process P,

flag[i] = true;

turn = j;

while (flag[j] && turn = J)
critical section

flag[i] = false;
remainder section

} while (true);

Operating System Concepts — 9t Edition 5.14 Silberschatz, Galvin and Gagne ©2013

- :
r o Peterson’s Solution (Cont.)

B Provable that the three CS requirements are met:

1. Mutual exclusion is preserved
P. enters CS only if:

either flag[j] = false Or turn = i
2. Progress requirement is satisfied
3. Bounded-walting requirement is met

£ - =X \]
. /}‘; ‘.3\;
e

4 Ct

A ‘jv 3

\

Operating System Concepts — 9t Edition 5.15 Silberschatz, Galvin and Gagne ©2013

| ._'/f/-,_,.w\i = | |
f Synchronization Hardware

B Many systems provide hardware support for implementing
the critical section code.

m All solutions below are based on idea of locking
e Protecting critical regions via locks
B Uniprocessors — could disable interrupts
e Currently running code would execute without preemption
e Generally too inefficient on multiprocessor systems
» Operating systems using this not broadly scalable

® Modern machines provide special atomic hardware
Instructions

» Atomic = non-interruptible

e test memory word and set value P
|
e swap contents of two memory words Pa

W
Ay
5.16

g
w47 Solution to Critical-section Problem Using Locks

do {
acquire lock
critical section
release lock

remainder section

} while (TRUE);

S\
e <
WS

“ A9%

Operating System Concepts — 9t Edition 5.17 Silberschatz, Galvin and Gagne ©2013

.

2
=

iy -
o test and set Instruction
Definition:
boolean test and set (boolean *target)
{

boolean rv = *target;
*target = TRUE;
return rv:

}
1. Executed atomically

2. Returns the original value of passed parameter
3. Set the new value of passed parameter to “TRUE".

Silberschatz, Galvin and Gaghe ©2013

Operating System Concepts — 9t" Edition 5.18

. - '
g5 Solution using test_and_set()

B Shared Boolean variable lock, initialized to FALSE
®m Solution:

do {
while (test and set(&lock))

; /* do nothing */
/* critical section */
lock = false;
/* remainder section */

} while (true);

A

g \
=
B
<A

L
A

Operating System Concepts — 9t Edition 5.19 Silberschatz, Galvin and Gagne ©2013

)
=< -r:‘

» ﬂﬂ.",‘»l
>

“$7/ compare_and_swap Instruction

Definition:
int compare and swap(int *value, int expected, int
new value) {

int temp = *value;

if (*value == expected)
*value = new value;

return temp;

}
1. Executed atomically
2. Returns the original value of passed parameter “value”

3. Set the variable “value” the value of the passed parameter “new_value”
but only if “value” =="expected”. That is, the swap takes place only upder,

this condition. - “;\‘}

~
!Ev_a

A3

4
7,

.y : -
~4»’ Solution using compare_and_swap

m Shared integer “lock” initialized to O;
m Solution:

do {
while (compare and swap(&lock, 0, 1) != 0)
; /* do nothing */
/* critical section */
lock = 0;
/* remainder section */

} while (true);

N
AN
> =3 o\
Lo
> =8
“’(
A &.r’

Operating System Concepts — 9t Edition 5.21 Silberschatz, Galvin and Gagne ©2013

&3\ of Bounded-waiting Mutual Exclusion with test_and_set

&\

do {
waiting[i] = true;
key = true;
while (waiting[i] && key)

key = test and set(&lock);
waiting[i] = false;
/* critical section */

j = (i+1) % n;

while ((j '= i) && 'waiting[j])
j=(j +1) % n;

if (J == 1)
lock = false;

else
waiting[j] = false;

/* remainder section */

} while (true);

Operating System Concepts — 9t Edition 5.22 Silberschatz, Galvin and Gagne ©2013

7 Mutex Locks

Previous solutions are complicated and generally
Inaccessible to application programmers

OS designers build software tools to solve critical section
problem

B Simplest is mutex lock

m Protect a critical section by first acquire () a lock then
release () the lock

e Boolean variable indicating if lock is available or not
Calls to acquire () and release () must be atomic

e Usually implemented via hardware atomic instructions

But this solution requires busy waiting
m This lock therefore called a spinlock

)

w

5 acquire() and release()

] acquire () {
while ('available)

; /* busy wait */

available = false;

}
0O release () {
available = true;
}
0O do {

acquire lock
critical section

release lock
remainder section

} while (true);

\

\““l
S
<
i “‘v by
A POV

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 5.24

»
5

f,

(.

G Semaphore

® Synchronization tool that provides more sophisticated ways (than Mutex
locks) for process to synchronize their activities.

m Semaphore S — integer variable
m Can only be accessed via two indivisible (atomic) operations
e wait () and signal ()
» Originally called P () and v ()
m Definition of the wait () operation
wait(S) {
while (S <= 0)
; // busy wait
S—-;
}
m Definition of the signal () operation
signal (S) {
S++; =

Operating System Concepts — 9t Edition 5.25 Silberschatz, Galvin and Gagne ©2013

e %"’“’1 Semaphore Usage

m Counting semaphore — integer value can range over an unrestricted domain
B Binary semaphore — integer value can range only between O and 1
e Same as a mutex lock
m Can solve various synchronization problems
m Consider P, and P, that require S; to happen before S,
Create a semaphore “synch’ initialized to O
Pl:
S,
signal (synch) ;
P2:
wait (synch);
S,
m Can implement a counting semaphore S as a binary semaphore

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 5.26

<4»/ Semaphore Implementation

B Must guarantee that no two processes can execute the
wait () and signal () on the same semaphore at the

same time

B Thus, the implementation becomes the critical section
problem where the wait and signal code are placed in
the critical section

e Could now have busy waiting In critical section
Implementation

» But Implementation code is short
» Little busy waiting if critical section rarely occupied

B Note that applications may spend lots of time In critical
sections and therefore this is not a good solution £

SN

-,
D

(B Semaphore Implementation with no Busy waiting

m With each semaphore there is an associated waiting queue
m Each entry in a waiting queue has two data items:

e value (of type integer)
e pointer to next record in the list
® Two operations:
e block — place the process invoking the operation on the
appropriate waiting queue

e wakeup — remove one of processes in the waiting queue and
place it in the ready queue

B typedef struct{
int value;

struct process *1list;

} semaphore;

Silberschatz, Galvin and Gaghe ©2013

Operating System Concepts — 9t" Edition 5.28

=

and . . -
‘vrg,r(Implementation with no Busy waiting (Cont.)

wait (semaphore *S) {
S->value--;

if (S->value < 0) {
add this process to S->list;

block () ;

}

signal (semaphore *S) {
S->value++;

if (S->value <= 0) {
remove a process P from S->list;

wakeup (P) ;

}

=

) '
T Deadlock and Starvation

m Deadlock —two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

m Let Sand Q be two semaphores initialized to 1

wait(S) ; wait(Q) ;
wait (Q) ; wait(S);
signal (S) ; signal (Q) ;
signal (Q) ; signal (S) ;

B Starvation — indefinite blocking

e A process may never be removed from the semaphore queue in which it is
suspended

m Priority Inversion — Scheduling problem when lower-priority process
holds a lock needed by higher-priority process

e Solved via priority-inheritance protocol

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 5.30

L N

, ,fm..\«\\] . .
~$»/ Classical Problems of Synchronization

m Classical problems used to test newly-proposed synchronization
schemes

e Bounded-Buffer Problem
e Readers and Writers Problem
e Dining-Philosophers Problem

Operating System Concepts — 9t Edition 5.31 Silberschatz, Galvin and Gagne ©2013

> o Bounded-Buffer Problem

N buffers, each can hold one item

Semaphore mutex initialized to the value 1

Semaphore full initialized to the value 0

Semaphore empty initialized to the value n

\

\\\“

S \
by
|
iU “ Y 2\
A AN

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 5.32

o
Y,

«¢% Bounded Buffer Problem (Cont.)

i

® The structure of the producer process

do {

/* produce an item in next produced */

wait (empty) ;

wait (mutex) ;

/* add next produced to the buffer */

signal (mutex) ;
signal (full) ;
} while (true);

\

A\ |
~

\
W<
\
L)

> .
S,
“«

Operating System Concepts — 9t Edition 5.33 Silberschatz, Galvin and Gagne ©2013

4
7,

«¢%’ Bounded Buffer Problem (Cont.)

i

® The structure of the consumer process

Do {
wait (£full) ;

wait (mutex) ;

/* remove an item from buffer to next consumed *x /

signal (mutex) ;

signal (empty) ;
/* consume the item in next consumed */

} while (true);

\\\ \
S e 3
g
“’ |
i W 3
A POV

Operating System Concepts — 9t Edition 5.34 Silberschatz, Galvin and Gagne ©2013

.
>
_ ,&

g Readers-Writers Problem

B A data set is shared among a number of concurrent processes

e Readers — only read the data set; they do not perform any
updates

e Writers — can both read and write
® Problem — allow multiple readers to read at the same time

e Only one single writer can access the shared data at the
same time

B Several variations of how readers and writers are considered —
all involve some form of priorities

B Shared Data

e Data set
e Semaphore rw mutex initialized to 1

e Semaphore mutex Initialized to 1

e e & \ .“\\“1
e Integer read_count initialized to 0 o |

Silberschatz, Galvin and Gaghe ©2013

Operating System Concepts — 9t" Edition 5.35

- -
~$»7 Readers-Writers Problem (Cont.)

® The structure of a writer process

do {
wait (rw_mutex);

/* writing is performed */

signal (rw_mutex);

} while (true);

A

2 \
>
B
<Ay

L
A

Operating System Concepts — 9t Edition 5.36 Silberschatz, Galvin and Gagne ©2013

=

u”—-’—"“} Readers-Writers Problem (Cont.)

®m The structure of a reader process

do {
wait (mutex) ;
read count++;
if (read count == 1)

wait (rw_mutex) ;

signal (mutex) ;

/* reading is performed */

wait (mutex) ;
read count--;
if (read count == 0)

signal (rw_mutex) ;
signal (mutex) ;

} while (true);

S e ‘E;‘

e <
WS

“d AP

Operating System Concepts — 9t Edition 5.37 Silberschatz, Galvin and Gagne ©2013

o

Philosophers spend their lives alternating thinking and eating

Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks
(one at a time) to eat from bowl

e Need both to eat, then release both when done
®m In the case of 5 philosophers
e Shared data
» Bowl of rice (data set)
» Semaphore chopstick [5] initialized to 1

Operating System Concepts — 9t Edition 5.39 Silberschatz, Galvin and Gagne ©2013

=

*iﬂ 'Dining-Philosophers Problem Algorithm

m The structure of Philosopher i:
do {
wait (chopstick[i])
wait (chopStick[(i + 1) % 5]),

o

// eat

signal (chopstick[i]),
signal (chopstick[(1 + 1) % 5])

// think

} while (TRUE) ;
®m What is the problem with this algorithm?

. \‘:\ \\
S t
-
i “(B
“ AR

Operating System Concepts — 9t Edition 5.40 Silberschatz, Galvin and Gagne ©2013

r,m‘,i@:‘
&.-:;rw_(Dining-Philosophers Problem Algorithm (Cont.)

B Deadlock handling

e Allow at most 4 philosophers to be sitting
simultaneously at the table.

e Allow a philosopher to pick up the forks only if
both are available (picking must be done in a
critical section.

e Use an asymmetric solution -- an odd-numbered
philosopher picks up first the left chopstick and
then the right chopstick. Even-numbered
philosopher picks up first the right chopstick and
then the left chopstick. /?

0 \;v

A

Operating System Concepts — 9t Edition 5.41 Silberschatz, Galvin and Gagne ©2013

‘Ei\
,«"‘."‘N

ol Problems with Semaphores

= |ncorrect use of semaphore operations:

e signal (mutex) wait (mutex) — violates ME

e wait (mutex) ... wait (mutex) — results in deadlock

e Omitting of wait (mutex) or signal (mutex) (or both) —
both ME & deadlock voilation

A
~

S t
o <
ik ‘v« s
ol .Q.‘.'.

Operating System Concepts — 9t Edition 5.42 Silberschatz, Galvin and Gagne ©2013

End of Chapter 6

Operating System Concepts — 9t" Edition Silberschatz, Galvin and Gagnhe ©2013

