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ABSTRACT

An access control system is often viewed as a state transi-
tion system. Given a set of access control policies, a general
safety requirement in such a system is to determine whether
a desirable property is satisfied in all the reachable states.
Such an analysis calls for formal verification. While formal
analysis on traditional RBAC has been done to some ex-
tent, the extensions of RBAC lack such an analysis. In this
paper, we propose a formal technique to perform security
analysis on the Generalized Temporal RBAC (GTRBAC)
model which can be used to express a wide range of tem-
poral constraints on different RBAC components like role,
user and permission. In the proposed approach, at first the
GTRBAC system is mapped to a state transition system
built using timed automata. Characteristics of each role,
user and permission are captured with the help of timed
automata. A single global clock is used to express the var-
ious temporal constraints supported in a GTRBAC model.
Next, a set of safety and liveness properties is specified using
computation tree logic (CTL). Model checking based formal
verification is then done to verify the properties against the
model to determine if the system is secure with respect to
a given set of access control policies. Both time and space
analysis has been done for studying the performance of the
approach under different configurations.
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1. INTRODUCTION

In a multiuser environment, access control is required for
controlled sharing and protection of resources. Over the past
few decades, many access control models have been proposed
to specify the different access control policies. These pri-
marily include Discretionary Access Control (DAC), Manda-
tory Access Control (MAC) and Role Based Access Con-
trol (RBAC). Among these, RBAC has gained considerable
attention due to its flexibility, ease of administration and
intuitiveness. RBAC can be viewed as a state transition
system where state changes occur via administrative oper-
ations. Roles, users and permissions are the three primary
components of RBAC.

For some applications, it is often required that access to a
particular resource is given on the basis of the current time
or location of the subject making the request. Due to such
growing requirements, the RBAC model has been extended
in temporal, spatial and spatio-temporal domains. These
extensions offer flexibility in specifying a variety of security
policies. Bertino et al. [1] introduced the idea of TRBAC,
which is an extension of RBAC in the temporal domain. Us-
ing this model, a user may activate a role only during certain
time intervals. Atluri and Gal proposed a Temporal Data
Authorization Model (TDAM). It is capable of expressing
access control policies based on the temporal characteristics
of data, such as valid and transaction time [2]. Recently, two
other models have been proposed for spatio-temporal access
control [3][4]. Both time and location of access request are
considered for allowing access in these models. Despite the
availability of a number of access control models, not many
formal security analysis techniques have been developed.

The fundamental question of safety is to answer the fol-
lowing: “Given the current authorization state and the pol-
icy specification, will a user (subject) ever gain access to a
specific resource (object)?” Thus, the basic aim of security
analysis is to check whether the system maintains desirable
security properties in all the states. The security properties
are formulated from a set of access control policies. A formal
verification technique then can be used to ensure the con-
sistency of an access control specification. Security analy-
sis provides answers to the queries whether an undesirable
state is reachable or all the reachable states satisfy the de-
sirable properties. In the context of an RBAC model, a
typical safety query would be “Whether a role remains en-
abled forever” or “Whenever a role is enabled, is another
role also enabled”? These queries can be classified primar-
ily into two types, namely safety and liveness. With safety
property, we try to ensure that “something bad should never



happen”. With liveness property we try to capture that “fi-
nally something good should happen”. When the analysis
techniques consider only safety properties, then we call it as
safety analysis. Security analysis generalizes the notion of
safety analysis in the sense that it considers not only safety
properties but also other types of properties.

Recently, researchers have initiated some work on formal
analysis of temporal and spatio-temporal extensions of ac-
cess control models. Our goal is to develop an approach to
answer the safety and liveness queries for temporal exten-
sions of RBAC. In TRBAC, temporal constraints on role
activation and temporal dependencies among roles are only
considered [1]. As a result, only a limited number of tem-
poral policies can be specified using this model. Joshi et al.
later proposed a more general model known as the Gener-
alized Temporal RBAC (GTRBAC) [5]. In this model it is
possible to specify a wider range of constraints, which in-
clude temporal constraints on role enabling, role activation,
role hierarchy, Separation of Duty (SoD) and role trigger.
While GTRBAC is capable of expressing many temporal
policies, it makes its formal analysis much more challenging.
In this paper, we propose a method for formal analysis of the
GTRBAC model. As a first step, a given GTRBAC model is
mapped to a state transition system using timed automata.
Next a set of security properties is specified in computa-
tion tree logic (CTL), which are finally verified against the
model.

The rest of the paper is organized as follows. Section 2
summarizes prior work done in this field. Section 3 describes
the method of mapping from a GTRBAC model to a timed
automata based model. Section 4 deals with the correct-
ness of the proposed mapping mechanism. A set of security
properties in the context of GTRBAC is specified in Section
5. Verification results are discussed in Section 6. Section 7
concludes this paper and provides future direction for work.

2. RELATED WORK

Harrison et al. [6] first formalized the problem of safety
analysis in the context of access control matrix model (com-
monly known as the HRU model). They showed that in gen-
eral, safety analysis problem for access control matrix model
is undecidable. Jones et al. proposed Take-Grant Protection
Model (TGPM) [7] which represents a system as a directed
graph where vertices are either subjects or objects. They
proved that it is possible to decide on the safety of a system
even when the number of subjects and objects is very large,
or unbounded. Thus, in a general scheme like HRU, safety
analysis is undecidable but in a scheme enforced with rea-
sonable restrictions such as TGPM, safety analysis becomes
decidable. So a balance is required between the ability to
perform an efficient safety analysis and the generalization
ability of a model. For this purpose, Sandhu introduced the
idea of Schematic Protection Model (SPM) [8]. It provides a
“high-level” structure compared to the “low-level” structure
of the access matrix. This makes policy specification more
convenient in SPM.

Later, Koch et al. [9] showed that with reasonable re-
strictions on the rules, the safety analysis problem becomes
decidable. They used graph transformations as a general
formalism to specify access control policies based on roles.
Ahmed and Tripathi [10] proposed a model checking mech-
anism for verification of security requirements in role based
Computer Supported Cooperative Work (CSCW) systems.

34

Li and Tripunitara [11] were the first to analyze RBAC.
They performed security analysis on two restricted versions
of administrative RBAC. These are known as AATU (As-
signment And Trusted Users) and AAR (Assignment And
Revocation). They proposed two reduction algorithms and
studied complexity results for various analysis problems such
as safety, availability and containment. Stoller et al. [12]
considered negative preconditions and static mutually exclu-
sive role constraints in the policy analysis of administrative
RBAC. Zhang and Joshi [13] addressed constraints like hy-
brid hierarchy and dynamic separation of duty in handling
the user authorization process. In [14], Jha et al. made a
comparison between the use of model checking and first or-
der logic programming for the security analysis of RBAC. It
was concluded that model checking is a promising approach
in this context.

Formal analysis of GTRBAC needs to be done differently
due to the presence of temporal constraints in the system.
Joshi et al. [15] presented an analysis of the expressiveness
of the constructs provided by GTRBAC model and showed
that its constraints-set is not minimal. Bertino et al. [1] pro-
vided a polynomial time algorithm to verify whether specifi-
cations in TRBAC are free from ambiguities. In [16], Shafiq
et al. studied a Petri-Net based framework for verifying the
correctness of event-driven RBAC policies in real time sys-
tems. It considers only the cardinality and separation of
duty constraints. But it does not handle temporal RBAC
policies. A few other systems where time is considered to
be a critical factor have also been analyzed. Alur et al. [17]
have used model checking for the analysis of real time sys-
tems. Furfaro and Nigro [18] have used timed automata for
temporal verification of real time state machines.

Recently, Mondal and Sural have suggested two approaches
for the security analysis of RBAC with limited temporal
constraints using timed automata [19][20]. Though the first
one [19] performs better, it addresses a limited number of
constraints. Role trigger is not considered in the second ap-
proach [20]. Both the approaches assume that a user can ac-
tivate only a single role at a particular instance of time. Se-
curity analysis performance degrades with growing number
of users, roles and permissions. In this paper, our analysis
scheme addresses all the temporal constraints of GTRBAC
including triggers and it also allows users to activate multi-
ple roles at the same time as well as at different points in
time.

3. FROM GTRBAC TO TIMED AUTOMATA
BASED MODEL

The first step of security analysis is to design a formal
model using timed automata from a given GTRBAC model.
Each component, namely role, user and permission, is rep-
resented using a timed automaton. Different temporal con-
straints on role enabling, disabling, role activation, deactiva-
tion, permission assignment, user assignment, role hierarchy
and SoD are considered during this mapping process. Before
going into the details of the mapping mechanism, the GTR-
BAC model is introduced first followed by a brief overview
of timed automaton.

3.1 GTRBAC - Preliminaries

Joshi et al. introduced the GTRBAC model [5] to specify
a comprehensive set of temporal constraints. It is an exten-



sion of TRBAC model proposed in [1]. Several important
aspects that can be handled in GTRBAC are given below-

e GTRBAC addresses temporal constraints on user-role
assignments, role-permission assignments, role hierar-
chy, SoD, role trigger. This provides a large number of
options in specifying a wide range of temporal access
control policies.

e This model distinguishes between role enabling and
role activation. A role is in the enabled state if it is
ready for user assignment and the role is in the dis-
abled state if the users cannot activate the role. A role
is said to be active if there is at least one user who
has assumed that role. Once a role is in active state,
reactivation of the role does not change the state of
the role. When all the users deactivate the role then
role moves to the enabled state.

e The model can handle periodic as well as duration
constraints. The periodicity constraints are used to
specify the exact intervals during which a role can be
enabled or disabled, and during which a user-role as-
signment or a role-permission assignment is valid. Du-
ration constraints are used to specify a duration for
which enabling or assignment of a role is valid. De-
pending upon the organizational requirements, these

constraints can be applied on various components of
RBAC.

3.2 Brief Overview of Timed Automaton

Alur and Dill [21] introduced the idea of timed automaton.
It is a finite state machine equipped with a set of clocks. All
the clocks are synchronized, i.e., they advance at the same
pace. The clocks can take any non-negative real number in
R. If C is a finite set of clock variables, then a clock valuation
v over C is a function v : C' — R which associates with every
clock ¢, its value v(c) € R. The clock valuations over C' are
represented by RY. If d is a delay such that d € R then
v(c) + d represents the clock valuation associated with clock
c and delay d. B(C) represents a set of clock constraints
over C'. The clock constraints can be of the form ¢ > k
where ¢ € C, e {<,<,==,>,>} and k € N. When a
valuation v satisfies a constraint g, it is written as v =g. A
timed automaton is a 6-tuple (L, lo, C, A, E, I) where:

e [ is a finite set of control states, also called locations.
e [p € L is the initial location.

C'is a finite set of clocks.

A is a set of actions.

e £ CLxAxB(C)x29x L is a finite set of tran-
sitions. An element e € FE can be expressed as e =
(l1,a,g,7,12) which represents a transition from I; to
l2, g is a guard which is a conjunction of boolean ex-
pressions involving clocks or some other variables, r is
the set of clocks that is reset by e, and a is the action of

e. The transition can also be represented by 1 KAl ls.

e [: L — B(C) assigns invariants to locations.

Several timed automata can interact with each other by
the use of channel synchronization. The intuition is that
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Figure 1: Role timed automaton

two automata can synchronize on enabled edges annotated
with complementary synchronization labels, i.e., two edges
in different automata can synchronize if the guards of both
edges are satisfied, and they have the synchronization labels
action? and action! respectively.

3.3 Construction of Timed Automata for GTR-
BAC Components

Role, user and permission - these are the three primary
components of an RBAC scheme. The behavior of these
components is represented using TA. Like a directed graph,
a timed automaton has many nodes, known as control states,
which are connected via directed edges labeled by temporal
constraints and actions. The target here is to identify the
different states of each GTRBAC component and represent
them by one or more control states. As mentioned before, in
GTRBAC, a role can be in disabled, enabled or active state.
For representing enabling and disabling behaviors, two con-
trol states - labeled as “Disabled” and “Enabled” - are created
in the automaton where “Disabled” is considered to be the
initial state. Transitions from “Disabled” to “Enabled” and
“Enabled” to “Disabled” are annotated using guards or some
synchronization actions. Thus, with these two locations, the
role enabling and disabling behavior can be represented as
shown in Figure 1.

Next, the active state of a role is considered. An enabled
role becomes active when a user acquires the permissions
associated with it. So, with the first user assignment, an
enabled role goes to the active state. A user assignment is
performed by an activation operation invoked by the user.
Any subsequent activation operation does not change the
state of the role. When all the users are unassigned from
the role then the role goes back to the enabled state. From
enabled or active state, a role can go back to the disabled
state. In case of role hierarchy, the users of a senior role can
directly activate a junior role provided the junior role is al-
ready in enabled state. To capture this behavior in the timed
automaton, a control location labeled as “Active” is added.
Now the transition from “Enabled” to “Active” is labeled by
a role activation operation initiated by a user. This action
is represented as activate_r;[id] where r; is the role under
consideration and id is an integer variable representing the
user who is trying to activate the role. To keep track of the
number of users assigned to a role, a counter userCnt_r; is
used. The value of the counter is adjusted with each acti-



vation and deactivation operation. A self-loop labeled with
activation action is required at the “Active” location to re-
flect the fact that when a role is in “Active” state, it remains
in that state with further such activation operations. Simi-
lar to role activation, two transitions — one from “Active” to
“Active” and another from “Active” to “Enabled” are needed.
These transitions are labeled by an action deactivate_r;[id].
A complete role timed automaton is shown in Figure 1.

Algorithm 1 Construction of Role Timed Automaton
1: for each r € R do

2: 1=0;75=0;

3: for each (< u,7’ > UA) AND (' ==r) do
4: i+ +;

5.  end for

6: mn=1; {/* n users can activate role r*/}

7. for each (< r',p >€ PA) AND (' ==r) do
8: j++

9:  end for

10:  m = j;{/* r is associated with m no. of permissions
*/}

11: construct a timed automaton TA, =<
L,Lo,C, A, E, I > such that

12:  L={Disabled, Enabled, Active, Ayo, ..., Ap(m-1),
EP07 e Ep(mfl)};

13: commit({Apo, - ., Apim—1)> Epo, - - Epim—1)});{/*
commit() function marks a set of locations as
“Committed” */}

14: Lo = {Disabled}; C = 0; I = 0;

15:  A={enable_r, disable_r, activate_r[n),
deactivate_r[n], access_po, .. ., access_pm—1, deny_po,
. ondeny_pm—1};

16: E = {Disabled enabler?
Enabled, Enabled activateylid?

€s5pm—1!
APO, RN} Ap(m—l) o é—p> '
Active, Active activate rfid]?
Active, Active deactivater{id]?
Active, Active deactivateriidl?
denypp 1!
Epo, - -y Epm-1) b

Enabled, Enabled disabler? Disabled};

17: end for

Temporal constraints are also applicable on the permission
assignment relation. With this constraint, when a role is
active, the permissions associated with it are made available
on satisfying the given temporal constraints. But in most of
the situations it is desirable that when the role is active then
all the permissions associated with it are also available to the
users of the role. With the first role activation operation, the
permissions associated with the role can be accessible by the
users of that role, and when all the users deactivate the role,
permissions are also no longer accessible. This is done in our
proposed approach by introducing a “Committed” location
for each permission in the role timed automaton.

DEFINITION 1. Committed Location: A committed loca-
tion in a timed automaton is a location which freezes time.
Thus in a committed location, the value of the clock variables
does not progress.

These locations are labeled as Apo, Ap1, ..., Apmm—1) in
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Figure 1. From each such location, a permission access re-
quest is sent using synchronization action access_p; where
t = 0,...,(m —1). Similarly, from the committed loca-
tions Epo, Epi1, ..., Epwm-—1), another synchronization ac-
tion deny_p; is used. The complete process of constructing
role timed automata is given in Algorithm 1.

A permission timed automaton as shown in Figure 2 is
created using two locations - “Inactive” and “Active”. Tran-
sition from “Inactive” to “Active” is labeled with the action
access_p; and transition from “Active” to “Inactive” is la-
beled with deny_p;. So with the first access request, the
permission role timed automaton is in the “Active” state.
Two self-loop transitions are also added in the “Active” lo-
cation. One is labeled with access_p; action which keeps the
automaton in “Active” location as long as the access request
(in the form of access_p;) is coming from the role timed au-
tomaton. Another transition is labeled with deny_p; action.
This indicates that the role remains in “Active” location un-
less all the deny requests (in the form of deny_p;) are served.
The algorithm for the construction of permission timed au-
tomata is given in Algorithm 2.

Algorithm 2 Construction of Permission Timed Automa-
ton

1: for each p € P do

2:  construct a timed automaton
L,Lo,C, A, E, I > such that
L={Inactive, Active};
Lo = {Inactive}; C = 0; I = ;
A={access_p,deny_p};

access_p?
E = —

Active, Active
Inactive};
7: end for

T4, =<

. . access_p?
Active, Active —

Active, Active

{Inactive

deny_p? deny_p?
— —

It can be observed that the basic structure of role timed
automaton is the same for all roles except for the action
names. This is also true for permission timed automata.
But to represent various types of users behavior, the struc-
ture of the user timed automaton may not remain the same.
For example, one user may be allowed to activate only a
single role, whereas another user may be allowed to acti-
vate multiple roles at the same time, or multiple roles but
not at the same time. So, depending upon such behavioral
characteristics, four different types of user interactions are
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identified. They are termed as Type-1, Type-2, Type-3 and
Type-4 interactions.

e Type-1 interaction: A user participating in this type
of interaction can activate only a single role at a time.
To represent it using a timed automaton, two loca-
tions - “Idle” and “Active” are needed. The transition
from “Idle” to “Active” is labeled with a temporal con-
straint and an action for activating the role. Similarly,
another transition from “Active” to “Idle” is needed. In
Figure 3, user timed automaton for Type-1 interaction
is shown. Here the user sends an activation action to
rl when ¢t = t1 and at ¢ = ¢2, the user sends a deac-
tivation action. The user can remain in the “Active”
location till ¢ < t2, so an invariant ¢ < ¢2 is used for
“Active” location.

e Type-2 interaction: In this type, a user can activate
multiple roles at different time instances. With one
activation request, the user goes to the “Active” state
and it remains in that state if it wants to activate any
other role. When the user has sent all the deactivation
requests, it goes back to the “Idle” state. The basic
structure of user automaton for Type-2 interaction is
same as that of Type-1, but in this case “Active” loca-
tion has an extra pair of self-loops for each additional
role activation and deactivation operation, which are
labeled with some temporal constraints. This is illus-
trated in Figure 4.

e Type-3 interaction: In this type of interaction, a
user can activate multiple roles at a particular instance
of time. This can be done using the “Committed” lo-
cation where time variable does not proceed. So to ac-
tivate n roles at a single time instance, “Committed”
locations Ag, A1, ..., An—_2 are used in the automa-
ton as shown in Figure 5. Using the first activation
operation, the automaton goes to the Ag location and
then time does not proceed further as long as they pass
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through the “Committed” locations. The next transi-
tions are labeled with other activation actions. Thus
when the “Active” location is reached, a total of n ac-
tivation requests have been sent by the user without
change of time. Similarly, the user can send multi-
ple deactivation requests at a particular time instance

using the “Committed” locations Iy, I1,..., Ih—2.

e Type-4 interaction: This type of interaction satis-
fies the constraint Separation of Duty (SoD). Users can
activate multiple roles but not at the same time. To
implement such type of interaction, parallel transitions
are needed between two locations. Both the transi-
tions are labeled with the same temporal constraints
but with different actions. At a given time, either of
the two transitions is selected non-deterministically.
However, when one is selected the other one cannot
be selected. So if there are two conflicting roles, then
it will introduce two parallel transitions from “Idle” to
“Active” for activation operations and two more paral-
lel transitions from “Active” to “Idle” for deactivation
operation. In Figure 6, a user timed automaton having
Type-4 interaction is shown with two conflicting roles
r; and rj.

A separate algorithm has been developed for the construc-
tion of user automaton for each type of interaction. Due to
page restriction we only show user automaton construction
for Type-4 interaction in Algorithm 3.

3.4 Controller Timed Automaton

In Subsection 3.3, role, permission and users are mapped
to timed automata. To design a complete GTRBAC sys-



Algorithm 3 Construction of User Timed Automaton of
Type-4 Interaction
1: for each u € U do
2: construct a timed automaton TA, =<
L,Lo,C,A,E,I > such that {/* u can activate
one of the conflicting roles at a time */}

3: i=0;

4:  for each (< v',r >€ UA) AND (v’ ==u) do

5: A = AU {activate_r[id], deactivate_r[id] }; i++;

6: end for

7: n=i;

8: L={Idle, Active}; Lo = {Idle}; C =1t

9- E _ {Idle g,actzgte,r[zd]!
Active, ..., Idle g sactivaterid]!
Active, Active g-deactivate-rlid]t
Idle, Active * rdeactivafer[id]! Idle};

10: I = Active — framelnv(g');{/* framelnv() con-
structs the invariant */}

11: end for

tem, several timed automata are required. In a timed au-
tomaton, temporal constraints are specified using clock vari-
ables which are to be used carefully since they directly af-
fect the verification process. More the number of clock vari-
ables, higher is the complexity of the model checking process
[22][23]. To express the temporal constraints, a global clock
can be used by all the timed automata. Although these au-
tomata can use the global clock, they are not allowed to
update the clock value. So a separate automaton is created
to keep control over the global clock variable. It is respon-
sible for enabling and disabling of roles and updating of the
clock variable. This automaton is termed as the Controller
Automaton. In this automaton, at the first transition, the
clock value is initiated and at the last transition, the clock
value is reset. Each transition is labeled with a temporal
constraint using the global clock and a corresponding role
enabling and disabling action. If two roles have to be enabled
or disabled at the same time instance, then a “Committed”
location can be used. In Figure 7, a Controller Timed Au-
tomaton is shown. It enables three roles among which two
are enabled at the same time instance. Also they are dis-
abled at the same time instance. The reset function is used
to update the value of the clock variable. The details of
construction of controller automaton is given in Algorithm
4.

4. CORRECTNESS OF THE MAPPING
PROCESS

To show the correctness of the proposed mapping scheme,
it is to be shown that each of the constraints of GTRBAC
model is properly mapped to timed automaton. In GTR-
BAC, time is represented by a periodic expression [5]. A
periodic time instance can be expressed as a tuple <[begin,
end],P> where P is a periodic expression denoting an infi-
nite set of time instants and [begin, end] is a time interval
denoted by a lower and an upper bound that are imposed
on instants in P.

The periodicity part of a time instance is represented in
the timed automaton as m * i + t., where m is a constant
and i is an integer variable. If hour is taken as the lowest
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Algorithm 4 Construction of Controller Timed Automaton
1: i=0;

2: for each (r € R) do

3. if enable(r,t) then

4: list[i++] =< r,t,0 >;{/* 0 is used for role enabling
action */}

5:  end if

6:  if disable(r,t) then

=

listli++] =< r,t,1 >;{/* 1 is used for role disabling
action */}

8: end if

9: end for

10: n=i;

11: sortAsc(list);{/* sort list in ascending order on the basis
of t */}

construct a  timed  automaton
L,Lo,C, A, E, I > such that
L:{Lo};A:@;EZQ; LoZLo;C:t
prev_time = 0;

fori=0to (n—1) do

12: TA. =<
13:
14:

15:

16: L=LU {Li+1};

17 curr_time = getTime(list[i]);

18:  if (curr_time = prev_time) then

19: commit({L;});{/* commit() function marks a set

of locations as “Committed” */}

20:  end if

21: g = frameGuard(list[i]);{/* frameGuard() constructs
the temporal expression */}

22:  act = getAction(list[i]); {/* getAction() determines
whether the function is enable_r; or disable_r; */}

23: I = Lit1 — framelnv(g);{/* framelnv() constructs
the invariant */}

24: A= AU{act}; E=EU{L; “*% L1}

25:  prev_time = curr_time;

26: end for

27 BE=EU{Liss < Lo);




time unit, then to represent each day’s behavior for a week,
m can be assumed to be 24 and the value of i may range
from 0,1,...,6. Durability constraint can also be applied
here. Suppose a role remains in the enabled state for n
hours. With one transition, say t == 24 x i + t1, the role
gets enabled and with another transition, say t == 24x*i+t2,
the role is disabled. Here t2 should be defined in such a way
that t2 = t14+n. Thus, the duration is the difference between
the time instances of outgoing and incoming transitions of
a location. Also, if day is considered to be the lowest time
unit, then m becomes 7 to represent weekly behavior of the
role and ¢ can range from 0,1,...,3 to represent the four
weeks. In the controller automaton the last transition resets
the clock.

e Temporal constraints on role enabling: A role
can be enabled or disabled depending upon satisfy-
ing some temporal constraints. In our proposed map-
ping scheme, the controller timed automaton is used
for triggering the enabling and disabling actions. In
Subsection 3.4, it has already been explained how the
controller automaton works.

e Temporal constraints on role activation: Tem-
poral constraints on role activation determine when a
user will get a role. This temporal constraint is used
on the user timed automaton. The “Idle” to “Active”
transition is labeled with a temporal constraint. An
activation request is sent during the transition to a
role it wants to activate. Thus the role gets active at
some particular time instance.

e Temporal constraints on role hierarchy: Role
hierarchical relation is implemented using user timed
automaton with Type-2 interaction. Role hierarchy
means the users of an active role (senior role) can ac-
tivate another role (junior role). In Type-2 interaction
shown in Figure 4, the transition from “Idle” to “Ac-
tive” activates the senior role using some temporal con-
straints. The transitions from “Active” to “Active” ac-
tivates a junior role with another temporal constraint.
Thus, unless the senior role is active the junior role
cannot be active.

e SoD: This constraint is incorporated using Type-4 in-
teraction. In SoD, whenever a user has activated a
role, it cannot activate another conflicting role at the
same time interval. In Type-4 interaction shown in
Figure 6, two transitions from “Idle” to “Active” are
used for activation of two conflicting roles. Any one
of the transition is enabled at a time, and with this
enabled transition, one of the roles is active. Unless
the user has deactivated the role, it cannot activate
the other role.

e Trigger: In GTRBAC, an event can trigger another
event, which is also captured in the proposed scheme.
When a role is enabled, it may enable another role.
For example, when a role r; is enabled, it can enable
another role, say ri. This is achieved by adding a
self loop at the “Enabled” location of the r; role timed
automaton. This self loop transition is labeled with
an enabling action. Role rj is enabled after receiving
this action. In the controller timed automaton there
is no transition for r,. So unless r; is enabled, ry will
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Figure 8: An enabled role triggers another role to
enable

not be enabled. In Figure 8 the role timed automaton
is shown which triggers another role to move to the
enabled state.

Thus it is seen that all the features of GTRBAC can be
appropriately represented using timed automata.

5. SECURITY QUERIES FOR GTRBAC

In this section, we propose a desirable set of security
queries that can be used for the security analysis of GTR-
BAC. The queries are specified using temporal logic, which
expresses time as a sequence of states. Linear Temporal
Logic (LTL) and Computation Tree Logic (CTL) are two
variants of temporal logic. In LTL, the future is consid-
ered as a single path while CTL models time as a tree like
structure where the future may consist of different paths.
Two common operators used to express state formulae are
G, which means “globally” or “in all states”, and F', which
means “finally” or “there exists some state”. In our proposed
scheme, we use CTL as it has the feature to express quanti-
fiers over paths of reachable states. Two path quantifiers -
A for “all the paths” and E for “there exists a path”, are fre-
quently used in specifying the queries. A set of constraints
applicable to GTRBAC is listed in Table 1.

The predicate enable(r,t) asks whether a role r can be
enabled at a particular time instance ¢. To ensure safety, a
query can be asked whether a role remains enabled at some
unfavorable condition.

DEFINITION 2. Unfavorable Condition: An wunfavorable
condition w.r.t an event is defined as a time instance, or
some condition like enabling or activating of a role, which
must not hold for the event to be true.

An unfavorable condition is represented here by x which is
a time instance (possibly a periodic time instance) or some
event unfavorable for role r. Thus k w.r.t a role activa-
tion event r.active may be defined as t = t; or r’.active
where r and 7’ are two conflicting roles. So, in general, a
safety query related to role enabling constraint is “A role
r should never be enabled at some unfavorable condition”.
In our proposed scheme this can be expressed in CTL as
follows - AG(r.enabled — —k). Here AG means “in all the
paths and in all states”. Similar reasoning holds for predi-
cate active(r,t). In CTL, the safety property related to role
activation can be expressed as AG(r.active — —k).



Table 1: GTRBAC Constraints and Semantics

Constraints Representation

Semantics

Role Enabling enable(r,t)

whether r is enabled at time t

User Role Activation activate(u,r,t)

whether u can activate r at time t

Role Activation active(r, t)

whether r is active at time t

Role Hierarchy r_active(rl, r2,t)

whether users of rl can activate r2 at time t

SoD (m,S8S0Ds(r1,r2,...,rn,u)) | in the interval = u should not activate
more than one role from r1,72,...,rn
Trigger el —e2 event el triggers event e2

Another predicate related to user role activation constraint
is activate(u,r,t), i.e., it asks whether a user u can ac-
tivate role r at time t. Here a general safety query can
be stated as “A user should never activate a role at some
unfavorable condition”. This can be expressed in CTL as
AG((u.active — r.active) — —K).

Next we consider the role hierarchy constraint. Predi-
cate r_active(rl,r2,t) represents a role hierarchical relation.
Here r1 is a senior role and 72 is a junior role. The relation
indicates that the users of role 71 can activate role r2 at time
instance t. So in this context, a safety query is “Whether a
user of a senior role rl activates a junior role r2 at some un-
favorable condition”. This is an example of activation-time
hierarchy constraint, i.e., a user can activate the junior role
only if it has already activated the senior role. Other types
of temporal hierarchies can also be addressed but for that
the necessary adjustments are to be made in the role timed
automaton. In CTL the property can be expressed as
AG(((u.active — rl.active) — (u.active — r2.active)) —
—\K,)

Separation of Duty (SoD) is an important constraint in
GTRBAC. During a particular time interval if a user has
activated a role then he should not be allowed to activate
any other conflicting role. Here a strong form of interval con-
straint on Static SoD is considered. From this constraint,
another important security property can be obtained- “A
user should never activate more than one conflicting roles
within a particular time interval”. In CTL, this can be ex-
pressed as
AG(((u.active — rl.active) — —(u.active — r2.active)) V
((u.active — r2.active) — —(u.active — rl.active)))

Another constraint in GTRBAC is through the use of trig-
gers. An event el may trigger another event e2 which is
expressed as el — e2. For example, when a role is enabled,
it can enable another role. Here one is the cause for the
other. So a safety requirement may be “An event el should
always trigger another event e2”. This can be expressed as
AG(el — e2).

Along with safety queries it is also important to spec-
ify some liveness queries to ensure that the system is doing
something good as well. For liveness, a property should
eventually be satisfied at some reachable state. So a general
liveness query related to role enabling constraint is “A role
should eventually be enabled at some favorable condition”.

DEFINITION 3. Favorable Condition: A favorable condi-
tion w.r.t an event can be defined as a time instance, or
some specific event like enabling or activation of a role, that
must be satisfied when the event is true.

A favorable condition is represented by p. In CTL, the live-

ness query mentioned above can be specified as EF(r.enabledA

1). Here EF means “there exists a path in which there exists
a state”.

Similar to the role enabling constraint, a liveness query
can be applied on role activation constraint as well. For
example, “a role will eventually be active at some favorable
condition.” This can be expressed in CTL as EF(r.active A
u). A liveness query can also be asked on user role activation
constraint. This can be put as “a user can eventually activate
a role at some desirable situation”. In CTL, this is expressed
as EF ((u.active — r.active) A ).

Next, role hierarchical relation is considered. Here a gen-
eral liveness property can be put as “A user of role r1 will
eventually activate another role r2 at some favorable condi-
tion”. The equivalent CTL expression can be written as
EF(((u.active — rl.active) — (u.active — r2.active)) Ap).

On SoD constraint, we can state a liveness requirement as
“A user can eventually activate two conflicting roles at some
favorable condition.” In CTL this can be expressed as
EF((((u.active — rl.active) — —(u.active — r2.active)) V
((u.active — r2.active) — —(u.active — rl.active))) A u).

Finally, the trigger constraint is considered. A liveness
query on a triggering constraint could be - “An event el
should eventually trigger another event e2”. In CTL, we
can specify the property as EF (el — e2).

6. VERIFICATION RESULTS

The verification problem for real time systems is PSPACE
complete [22]. In this section we consider different config-
urations of a system by varying the number of roles, users
and permissions and study the time and space required for
verifying the properties. At first, the following example is
considered.

EXAMPLE 1. Let us consider an organization for which
the role set is represented as R = {r0, rl,..., rd}, user
set as U = {w0, ul,..., ul6} and permission set as P =
{p0, pl, ..., pd}. For each role, a single permission is
associated.

Some of the important access control policies be specified
as follows:

e Role r0 is enabled daily at 10:00 and disabled at 17:00.

e Roles r1 and r2 are enabled daily at 11:00 and disabled
at 18:00.

e Role 13 is enabled daily at 13:00 and disabled at 16:00.

o Whenever any role is active, the permissions associated
with it are also accessible.

e FEnabling of r1 triggers enabling of 4.



e Users of role r0 can activate role r2 also (so here r0 is
a senior role and 12 is a junior role).

e User ub can activate both r0 and r1 simultaneously.

e User ul2 can activate either role v1 or r3 (This is an
SoD constraint, i.e., ul2 is not allowed to activate both
roles r1 and 13 at the same time).

With this information, a timed automata based model is
constructed. For verification, the following experimental set
up is considered - 2 GHz Intel Pentium Processor with 3
GB RAM running Linux OS. A timed automata based ver-
ification tool named Uppaal [24] is used with the following
options — breadth first search, conservative state space re-
duction, Difference Bound Matrix (DBM) state space rep-
resentation, automatic extrapolation and 16 MB hash table
size.

At first the controller automaton is built. Transitions are
labeled with temporal constraints for role enabling and dis-
abling. Next, the role timed automaton is constructed for
each role. Here five such automata are required for five roles.
For each role, there is a permission. For each permission, a
permission timed automaton is designed. Finally, a user au-
tomaton is constructed for each user. Depending upon the
user’s association with roles, they behave differently. For
example, users of role 70 can activate role 2 and hence, the
users u0,ul,...,u6 are represented by Type-2 interaction.
Again, since user u12 can either activate role r1 or r3 at a
time, it is modeled as a Type-4 interaction.

Next some of the safety and liveness properties are formed
using the guidelines described in Section 5. In Table 2, the
time and space requirements for the verification of these
safety and liveness properties are shown. Here a system con-
figuration is characterized by the user : role : permission
ratio. Various configurations are considered by varying the
number of roles, permissions and users. It is observed that
both verification time and space are dependent on the num-
ber of automata, (commonly known as processes in Uppaal)
in the system. Also, since clock constraints are used in each
user automaton, the state space size is quite sensitive to the
number of users. It is observed that in the configuration
17:5:5, if two users are increased, then both time and space
required increase drastically.

In [20], clock constraints are used in the role timed au-
tomaton. But the current model performs better than that
model. For the configuration 16:3:3, the scheme proposed in
[20] requires 39.603s time and 294,520 number of states for
verification of a safety query. But if the same safety query is
verified in the current scheme using the configuration 16:4:4,
it takes only 16.879s and 209,949 number of states. So this
scheme performs better compared to the other approach.
The detailed result for this model is shown in Table 2.

The proposed model suffers from state space explosion
if large number of users are considered. Though a single
clock variable is used in the model, yet temporal constraints
are required to be specified in each user timed automaton.
The size of DBM data structure is proportional to the num-
ber of temporal constraints. So with the increase in users,
such constraints also increase. This affects the verification
process. Thus to verify a large system with many users,
state space explosion may occur. One possible solution to
verify a large system would be to reduce the number of tem-
poral constraints. In [19], an attempt was made to verify
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the properties in a temporal RBAC model, where tempo-
ral constraints on role activation are only considered. But
obviously, it is not sufficient in a realistic application.

7. CONCLUSIONS

In this paper a state transition model for GTRBAC has
been proposed. We have utilized the expressibility of timed
automaton. It is seen that a timed automaton can express
any temporal constraint using its clock variables. The pro-
posed model maps the behavior of components such as users,
roles, permissions. The diverse behaviors of users are cap-
tured by creating automata of different types of interaction.
The location in each automaton represents the state of the
corresponding component. A desirable set of security prop-
erties is constructed from the constraints specified in the
GTRBAC model. These properties are then used for ver-
ification. To get an efficient result, a single global clock
variable is used to express the temporal constraints. In Sec-
tion 6, it is seen that the verification process is affected by
the state space explosion problem. Verifying the result for
a large system, thus, still remains a challenge. To perform
analysis of a large system, one may have to limit the tempo-
ral constraints. So a trade off has to be made on whether to
examine a system with large number of temporal constraints
or one with large number of users, roles and permissions.
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