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diagnosing errors in sequential circuits is much more difficult than
that in combinational circuits because circuit unrolling is used. For
example, the bug trace for the last benchmark has 77 cycles, and it
produces an unrolled circuit containing more than one million standard
cells. The characteristics of the benchmarks and their results are
summarized in Table I. For each benchmark, 32 traces were provided,
and the goal was to repair the circuit so that it produces the correct
output responses for those traces. Since our algorithm processes all
the traces simultaneously, only one iteration will be required. For the
computation of more representative runtimes only, we deliberately
processed the traces one by one and failed all verification so that all
the benchmarks underwent 32 iterations. All the bugs were injected at
the Register Transfer Level (RTL), and the designs were synthesized
using Cadence RTL compiler 4.10. In the table, “Err. Diag. time” is
the time spent on error diagnosis, “#Fixes” is the number of valid
fixes returned by CoRé, and “DPS time” is the runtime of DPS.
The minimum/maximum numbers of support variables and gates used
in the returned fixes are shown under “Resynthesis netlist.” Note
that implementing any valid fix is sufficient to correct the circuits’
behavior, and we rank the fixes based on the logic depth from primary
inputs: Fixes closer to primary inputs are preferred. Under “Err. diag.
time,” “1st” is the runtime for diagnosing the first bug trace, whereas
“Total” is the runtime for diagnosing all 32 traces. The comparison
between the first and total diagnosis time shows that diagnosing the
first trace takes more than 30% of the total diagnosis time in all the
benchmarks. The reason is that the first diagnosis can often localize
errors to a small number of sites, which reduces the search space of
further diagnoses significantly. Since CoRé relies on iterative diagnosis
to refine the abstraction of signatures, this phenomenon ensures that
CoRé is efficient after the first iteration. As Table I shows, error
diagnosis is still the bottleneck of the CoRé framework. We also
observe that fixing some bugs requires a large number of gates and
support variables in their resynthesis netlists because the bugs are
complex functional errors at the RTL.

VI. CONCLUSION

In this paper, we propose a framework, called CoRé, to correct
functional errors in digital circuits relying only on error traces. This
framework exploits both satisfiability and observability DCs, and it
uses an abstraction-refinement scheme to achieve better scalability. To
support the resynthesis task required in the framework, we propose
an encoding of resynthesis information, called PBDs, and use it in
our innovative resynthesis techniques. Because CoRé does not rely on
specific error models, it offers more error-correction capabilities than
many previous solutions. The experimental results show that CoRé can
produce a modified netlist which eliminates erroneous responses while
maintaining correct responses. In addition, CoRé supports combina-
tional and sequential error repairs, and it can be easily adopted in most
verification flows.
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ANN- and PSO-Based Synthesis of On-Chip
Spiral Inductors for RF ICs
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Abstract—This paper presents an efficient layout-level synthesis ap-
proach for RF planar on-chip spiral inductors. A spiral inductor is mod-
eled using artificial neural networks in which the layout design parameters,
namely, spiral outer diameter, number of turns, width of metal traces, and
metal spacing, are taken as input. Inductance, quality factor (Q), and
self-resonance frequency (SRF) form the output of the neural model.
Particle-swarm optimization is used to explore the layout space to achieve
a given target inductance meeting the SRF and other constraints. Our
synthesis approach provides multiple sets of layout parameters that help
a designer in the tradeoff analysis between conflicting objectives, such
as area, Q, and SRF for a target-inductance value. We present several
synthesis results which show good accuracy with respect to full-wave
electromagnetic (EM) simulations. Since the proposed procedure does not
require an EM simulation in the synthesis loop, it substantially reduces the
cycle time in RF-circuit design optimization.

Index Terms—Artificial neural networks (ANNs), layout synthesis,
on-chip inductor, particle-swarm optimization (PSO).

I. INTRODUCTION

Continuous growth in wireless-communication systems has stimu-
lated research in low-cost, low-power, and high-performance CMOS
RF integrated-circuit (IC) components for system-on-chip solutions.
On-chip spiral inductor is one of the major components of the RF ICs
that dominates circuit performance. In an RF IC, the operating fre-
quency of on-chip inductors is much lower than the first self-resonance
frequency (SRF). For example, a voltage-controlled oscillator (VCO)
operating at 2.5 GHz requires an inductor with an SRF of at least
6 GHz with a high-quality factor (Q). To fulfill this type of high-SRF
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requirements in the RF IC design, a long running EM simulation
is required. Conventional techniques such as numerical approaches
that include solution of algebraic and differential equations are com-
putationally expensive. Other methods like analytical and empirical
modeling techniques are time efficient but are not sufficiently accurate.

Artificial neural network (ANN) has emerged as an efficient alterna-
tive to these conventional modeling techniques. It is popular due to its
capability of learning any arbitrary nonlinear input–output relationship
from corresponding data and also because it produces smooth approx-
imation results from discrete data. Once a neural network is trained,
the model parameters such as weights and biases remain fixed. Thus,
the relationship between the model input and output becomes a closed-
form expression, and the trained network gives an almost instant output
due to low latency. Neural models are, therefore, much faster than
physics/EM models and have a higher accuracy than analytical and
empirical models. Furthermore, they are easy to develop for a new
device or technology [1], [2].

The optimization goals while designing spiral inductors depend on
the application. Several efforts have been made for finding the optimal
inductor-layout geometries that enhance the quality factor at a partic-
ular operating frequency and inductance value within a given design
space. The most common approach is the enumeration technique [3]
which uses discretized design parameters for simulations and selects
the geometry parameters corresponding to the highest Q value for
design. Inefficiency of this method becomes apparent with the increase
in the number of design variables since the complexity is exponential.
Geometric programming has been applied to the inductor-optimization
problem in [4] which requires a specific model formulation based
on curve fitting. In [5], a sequential-quadratic-programming-based-
optimization technique has been developed which improves the speed
over enumeration. However, it may get trapped in the local minima. In
[6], Q-contour is used for the optimization which is both time consum-
ing and technology-parameter dependent. Different search methods
like incremental search [7], binary search [8], and genetic algorithm
[9] are used for the optimization that search over all the geometry
parameters satisfying a set of constraints.

In this paper, we present an efficient synthesis procedure for the
spiral inductor based on the constraints imposed by design speci-
fications. We have developed a multilayer perceptron-based (MLP)
ANN model of on-chip spiral inductors and use the particle-swarm-
optimization (PSO) algorithm [10]–[13] to explore the layout space.
During exploration, the ANN model is used to compute the inductance
(L), Q, and SRF of each spiral. The proposed synthesis procedure
provides multiple sets of layout parameters for a given inductance
value within acceptable error limits. Synthesis results facilitate the
designer with more freedom for tradeoff analysis between objectives,
such as area, Q, and SRF for inductors.

The rest of the paper is organized as follows: Section II presents
the spiral-inductor-synthesis procedure. It also gives a brief overview
of ANN modeling and PSO. In Section III, modeling and synthesis
results are discussed. Finally, the conclusions are drawn in Section IV.

II. SPIRAL-INDUCTOR SYNTHESIS

A. ANN-Model Development

Multilayer perceptron feedforward network is one of the most
effective and widely used neural network structures. Typically, it
consists of an input layer, one or more hidden layers, and an output
layer. The neurons in each layer are connected to those in the next
layer by weighted edges. We consider four inductor-layout parameters,
namely, outer diameter (d), number of turns (N ), metal width (W ),
and spacing between metal traces (s), as the input to the neural model.

TABLE I
RANGE OF INPUT PARAMETERS

Technology parameters are not included in the input parameters since,
for a given fabrication process, the designer cannot control them. The
output neurons represent electrical attributes of the inductor which
are L, Q, and SRF. We use two hidden layers with 20 neurons each,
hyperbolic-tangent activation function for hidden layers and linear
activation function for output neurons.

In order to generate training and testing data sets, planar octagonal
spiral inductors were constructed in the range of geometric dimensions
shown in Table I for the 0.18-µm CMOS technology. This range covers
potential inductor dimensions for a typical wireless-communication
application. Based on uniform grid distribution sampling strategy, each
input parameter is sampled at an equal interval using the step sizes
given in Table I. For this kind of nonlinear problem, further fine
graining of data samples is expected to improve the input–output-
mapping accuracy but will also increase the number of spirals to
be simulated, thus requiring higher training-time investment. Out
of all the theoretically possible combinations, we have considered
500 realizable spirals and simulated them using IE3D [14], a full-
wave electromagnetic (EM) solver. The inductance and quality factor
for each inductor were extracted from the IE3D data as follows:

L =
Imag(1/Y11)

2πf
Q =

Imag(1/Y11)

Real(1/Y11)
. (1)

Here, Y11 is the input admittance of the two-port Y -parameters. The
SRF was measured from the Q plot at the frequency point where
the Q-value becomes zero. Although various neural-network-training
methodologies like k-fold cross validation which is followed by en-
semble analysis could have been done, we use the hold-out method
for building the neural model to reduce the total cycle time. There
is no perceptible loss in accuracy. Out of 500 spirals, 80% were
used for training, and the remaining 20% were used for testing the
neural network. We selected training and test data in a regular interval
of five units so that both cover the complete range and adequately
represent the original inductor behavior. As shown in Table I, the
input parameters for building the neural model vary over a wide range.
The corresponding output-parameter values of the inductors are also
quite different. As a preprocessing step, input and output data were
normalized to [−1 1] with respect to the minimum and the maximum
of the data range by means of linear scaling.

During neural-network training, the weight and bias values are
adjusted to minimize the training error which is a measure of the
correlation between the ANN-model output and the training data.
In this work, we have used the Levenberg–Marquardt method as
the training algorithm in MATLAB’s neural-network tool [15]. The
training error goal was set to 0.001. Further lowering of the error limit
reduces the generalization capability of the model. On the other hand,
setting it too high would lead to lower mapping accuracy. The learning
rate was taken as 0.01. If the learning rate is too large, it leads to
oscillation, whereas a very small value results in a longer training time
for reaching the same level of accuracy.

B. Particle-Swarm Optimization

In this subsection, we give a brief introduction to PSO. Fig. 1 shows
the basic flowchart of PSO. It is an evolutionary technique based on
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Fig. 1. PSO flowchart.

the social behavior, movement, and intelligence of swarms searching
for an optimal location. PSO works on a population of potential
solution candidates referred to as particles. Each particle in a swarm
is represented by a position and velocity vector.

Like other evolutionary algorithms, PSO uses a fitness function to
search for the best position. Each particle is initialized with a random
position and velocity. In every simulation run, the fitness function is
evaluated by taking the current position of the particle in the solution
space. The particles keep track of two best values. The first one is the
best fitness value obtained so far by the particle, the corresponding
position being termed as personal best (pbest). The other is the best
fitness value achieved so far considering all the particles in the swarm.
The location of the best fitness value in a whole swarm is called global
best (gbest). At each run, there is only one gbest, and all the particles
are attracted toward gbest. In an iteration, particle velocity and position
are updated based on pbest and gbest positions as follows:

vn+1
id =w × vn

id + c1rand1() ∗ (pn
best − xn

id)

+ c2rand2() ∗ (gn
best − xn

id) (2)

xn+1
id =xn

id + vn+1
id . (3)

Here, d = 1, 2, . . . ,D; i = 1, 2, . . . , Z; D being the number of design
parameters, Z the swarm size, and n the iteration number. The accel-
eration factors c1 and c2 in (2) indicate the relative attraction toward
pbest and gbest, respectively. The functions rand1() and rand2()
generate random numbers that are uniformly distributed between zero
and one. To assign equal weight to the relative pulls of pbest and gbest,
each of c1rand1() and c2rand2() was constructed to have an average
value of one by making c1 =c2 =2. The inertia-weight parameter w
controls the tradeoff between the global and local search capabilities
of the swarm. We start with a large inertia weight of 1.0 for an

Fig. 2. Proposed spiral-inductor-synthesis methodology.

initial bias toward the global search and decrease it linearly to a min-
imum value of 0.4 through different iterations to facilitate more local
explorations [16].

Another important PSO parameter is the maximum/minimum limit
on particle velocity. Without any such limit, particles can go out of
the solution space. Since there is no actual mechanism to control the
velocity of a particle, an external condition is imposed. Ten percent
of a particle’s position value is set as the limit of its velocity. A
position bound of the particles is also similarly imposed. The number
of particles in PSO is less critical than in other population-based
algorithms. The number typically varies from 10 to 40 depending on
the number of design variables and the complexity of the optimization
problem. For our problem, it was found that 30 particles were enough
to have good convergence. It may be noted that we use the global best
version of PSO. This was considered instead of other variants like local
best version to improve the speed of processing. It has been shown in
[17] that the PSO formulation of (2) is sufficient for avoiding being
trapped in the local minima.

C. Synthesis Methodology

On-chip spiral-inductor synthesis is the process of determining the
layout geometric parameters from electrical specifications. As it is
obvious, a target-inductance value can be realized by many different
combinations of layout parameters. Out of these, only the set of
inductor-layout parameters that meet all the design constraints is
considered.

We have developed a spiral-inductor-synthesis procedure that helps
the designer to make a tradeoff analysis between the competing objec-
tives, namely, Q, SRF, and outer diameter, for a given L. The synthesis
flow is shown in Fig. 2. Inductor-synthesis goals are determined by
the specific circuit application with the constraints imposed by the
design specifications. Our synthesis procedure uses ANN and PSO.
The PSO optimizer generates a swarm of particles, each representing
a combination of layout parameters in the given design space. The
ANN takes each combination of layout parameters and produces L,
Q, and SRF as output. Cost function is computed using these electrical
parameter values. Particles of the optimizer are then updated according
to the minimum cost. This process continues until a desired cost-
function objective is achieved or the maximum number of iterations
is executed. Usually, the spiral-inductor-design-optimization problem
is formulated to maximize the Q value for a target inductance subject
to certain constraints. Since, in this synthesis procedure, our aim is to
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TABLE II
ANN-MODEL ACCURACY

find a set of layout parameters which will give the desired inductance
value with in acceptable error, the cost function is formulated as

minimize LT − LANN

subject to Nmin ≤ N ≤ Nmax

dmin ≤ d ≤ dmax

Wmin ≤ W ≤ Wmax

smin ≤ s ≤ smax

d ≥ 2N(W + s) − 2s

SRF ≥ SRFgiven. (4)

Here, LT, LANN, and SRFgiven are the target inductance, the in-
ductance computed from the trained ANN, and the given minimum
SRF, respectively. Nmin, Nmax, dmin, dmax, Wmin, Wmax, smin, and
smax are the minimum and the maximum bounds of the corresponding
optimization variables.

During synthesis, PSO provides multiple solutions of layout para-
meters for a target-inductance value due to the random initialization
of particles and the random variables associated with the velocity-
and position-update process. The PSO-search process is terminated
if the objective function is less than an acceptable error value or if
the number of iterations reaches the maximum. In this paper, for the
synthesis of spiral inductors, the error value is set to 0.0001 nH and the
maximum number of iterations is taken to be 1000.

III. RESULTS AND DISCUSSION

A. ANN-Model Accuracy

In this paper, we used 400 inductor geometries for training and
100 inductors for testing the neural network. To verify the accuracy
of the neural models, statistical measures, such as the average relative
error and the correlation coefficient between the outputs and targets
were calculated for each output parameter. The average relative error
and the correlation coefficients are calculated as follows:

Average Relative Error

=

∑n

1
(x − y)

ny
(5)

Correlation Coefficient

=
n

∑
xy −

∑
x

∑
y√[

n
∑

x2 −
(∑

x
)2

] [
n

∑
y2 −

(∑
y
)2

] . (6)

Here, n, x, and y are the number of samples in the data set, the
ANN-model output, and the corresponding EM simulated value, re-

TABLE III
SYNTHESIS RESULTS FOR 4-nH SPIRAL INDUCTORS AT 1 GHz WITH

DESIGN SPECIFICATIONS: SRF > 6 GHz, d = 100−300 µm,
W = 8−24 µm, N = 2−6, AND s = 1−4 µm

spectively. The relative error signifies the closeness of the ANN out-
puts to the EM simulated values. The correlation coefficient is a
measure of how closely the neural output fits with the target values.
If this number is equal to 1.0, then there is a perfect fit between the
targets and the outputs.

Table II shows the percentage average error and the correlation coef-
ficient of each neural-model output with respect to the EM simulated
value. The average relative errors of L, Q, and SRF were found to
be less than 5%. This indicates good accuracy of the trained neural
network. In our examples, correlation coefficients are very close to
1.0, which indicates a good fit. The maximum relative error over the
different frequencies for L, Q, and SRF are 15%, 8%, and 8.5%,
respectively.

B. Inductor Synthesis

During the synthesis process, the objective of optimization is to find
inductor structures for a target-inductance value within the desired
accuracy level. From a design point of view, the synthesized set of
inductor-layout parameters that meets the design specifications of SRF
and L is to be selected. Table III shows the layout geometries of
the inductors as synthesized by the proposed approach for a desired
inductance value of 4 nH at 1-GHz operating frequency. It is seen
that the PSO-search process generates multiple sets of layout param-
eters with different Q and SRF values. In this example, 12 sets of
layout parameters are shown for a target inductance of 4 nH within
±0.01-nH accuracy. This helps the designer to make a tradeoff be-
tween Q, area (outer diameter), and SRF. It should be noted that it may
not be feasible to fabricate all the inductor geometries synthesized by
this approach due to the design rules of a particular process. In this
case, the design values may be rounded off to the nearest grid point
when doing the layout.
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TABLE IV
SYNTHESIS RESULTS FOR 3-nH SPIRAL INDUCTORS AT 2.5 GHz WITH

DESIGN SPECIFICATIONS: SRF > 8 GHz, d = 100−300 µm,
W = 8−24 µm, N = 2−6, AND s = 1−4 µm

TABLE V
OPTIMIZED-INDUCTOR GEOMETRIES AND EM-SIMULATION RESULTS

FOR 4-nH AND 3-nH SPIRAL INDUCTORS AT 1-GHz AND 2.5-GHz
OPERATING FREQUENCIES, RESPECTIVELY

TABLE VI
RUNTIME FOR SYNTHESIS PROCEDURE AND EM SIMULATION

Table IV shows the synthesized data for a 3-nH inductor for an
operating frequency of 2.5 GHz. The optimized synthesized layout
geometries for the maximum Q for the two designs of Tables III and IV
are consolidated in Table V. To validate the accuracy of our synthesis
approach, we simulated the inductors with geometries given in Table V
using the IE3D EM simulator. The L, Q, and SRF of these inductors
were extracted from simulated S-parameters using the steps mentioned
in Section II. The synthesized inductors show good matching with the
EM simulated results. Table VI shows the average runtime required
for the synthesis approach for 20 runs to achieve a target-inductance
value and also the runtime for the IE3D EM simulation. The synthesis
procedure and EM simulation were run on a 1.73-GHz Pentium-IV
machine with 256-MB RAM. EM simulation of spiral inductors were
done up to a frequency of 15 GHz with 0.5 GHz as step size.
On average, our proposed synthesis procedure evaluates more than
6000 spiral structures using the trained neural network in each run
for which the EM solver would have taken several thousand hours.
Since the initial EM simulation done for generating training data in
our approach is an off-line process, it does not adversely affect the
efficiency of the on-line synthesis steps.

IV. CONCLUSION

We have proposed an efficient layout synthesis procedure for RF
on-chip spiral inductors. A four-layer MLP neural model has been
developed. All the output parameters of the neural model show good
matching (within 5% accuracy) when compared with the data gener-
ated by an EM simulator.

The synthesis procedure is based on a PSO technique that evaluates
the electrical parameters from the geometric parameters using the
neural model. No EM simulation is required during the synthesis
procedure thus making the process efficient. The synthesis procedure
provides multiple solutions for a given design specification that helps
the designer in making a tradeoff between the competing objectives.
Several design examples have been presented using the proposed
approach. The synthesized inductors were resimulated using the IE3D
EM solver. The results obtained by our synthesis approach show good
agreement with the EM simulation results. Future directions would be
to consider other inductor geometries as well.

REFERENCES

[1] Q. J. Zhang, K. C. Gupta, and V. K. Devabhaktuni, “Artificial neural
networks for RF and microwave design—From theory to practice,”
IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1339–1350,
Apr. 2003.

[2] P. Burrascano and M. Mongiardo, “A review of artificial neural networks
applications in microwave CAD,” Int. J. RF Microw. Comput.-Aided Eng.,
vol. 9, no. 3, pp. 158–174, May 1999.

[3] A. M. Niknejad and R. G. Meyer, “Analysis, design, and optimization
of spiral inductors and transformers for Si RF IC’s,” IEEE J. Solid-State
Circuits, vol. 33, no. 10, pp. 1470–1481, Oct. 1998.

[4] S. S. Mohan, M. M. Hershenson, S. P. Boyd, and T. H. Lee, “Simple
accurate expressions for planar spiral inductances,” IEEE J. Solid-State
Circuits, vol. 34, no. 10, pp. 1419–1424, Oct. 1999.

[5] Y. Zhan and S. Sapatneker, “Optimization of integrated spiral inductors
using sequential quadratic programming,” in Proc. Des., Autom. Test Eur.
Conf. Exhib., Feb. 2004, vol. 1, pp. 622–627.

[6] C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on
silicon,” IEEE Trans. Electron Devices, vol. 47, no. 3, pp. 560–568,
Mar. 2000.

[7] J. E. Post, “Optimizing the design of spiral inductors on silicon,” IEEE
Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 47, no. 1,
pp. 15–17, Jan. 2000.

[8] N. A. Talwalkar, C. P. Yue, and S. S. Wong, “Analysis and synthesis of
on-chip spiral inductors,” IEEE Trans. Electron Devices, vol. 52, no. 2,
pp. 176–182, Feb. 2005.

[9] T. Wang, Y. Wang, and K. Chen, “A global genetic algorithm based
optimization technique for spiral inductor on silicon design,” in Proc. 5th
World Congr. Intell. Control Autom., Hangzhou, China, Jun. 15–19, 2004,
vol. 3, pp. 2095–2098.

[10] J. Ababneh, M. Khodier, and N. Dib, “Synthesis of interdigital ca-
pacitors based on particle swarm optimization and artificial neural
network,” Int. J. RF Microw. Comput.-Aided Eng., vol. 16, no. 4, pp. 322–
330, Jul. 2006.

[11] Y. Rahmat-Samii, “Genetic algorithm (GA) and particle swarm opti-
mization (PSO) in engineering electromagnetics,” in Proc. ICECom,
Dubrovnik, Croatia, Oct. 1–3, 2003, pp. 1–5.

[12] R. C. Eberhart and Y. Shi, “Particle swarm optimization: Developments,
applications and resources,” in Proc. Congr. Evol. Comput., 2001, vol. 1,
pp. 81–86.

[13] S. K. Mandal, S. Sural, and A. Patra, “Broadband scalable model
for Si-RF on-chip spiral inductors with substrate eddy current effect,”
Int. J. RF Microw. Comput.-Aided Eng., vol. 17, no. 6, pp. 560–573,
Nov. 2007.

[14] IE3D, Fremont, CA: Zeland Software, Inc. [Online]. Available:
http://www.zeland.com

[15] H. Demuth and M. Beale, Neural Network Toolbox for use with MATLAB.
Natick, MA: MathWorks Inc.

[16] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm opti-
mization,” in Proc. 7th EP, pp. 591–600.

[17] J. Park, K. Choi, and D. J. Allstot, “Parasitic-aware RF circuit design and
optimization,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 10,
pp. 1953–1966, Oct. 2004.


