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Abstract

The paper presents a novel approach for representing color and intensity of pixel neighborhoods in an image using a co-occurrence
matrix. After analyzing the properties of the HSV color space, suitable weight functions have been suggested for estimating relative con-
tribution of color and gray levels of an image pixel. The suggested weight values for a pixel and its neighbor are used to construct an
Integrated Color and Intensity Co-occurrence Matrix (ICICM). We have shown that if the ICICM matrix is used as a feature in an image
retrieval application, it is possible to have higher recall and precision compared to other existing methods.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Color and texture are two low-level features widely used
for image classification, indexing and retrieval. Color is
usually represented as a histogram, which is a first order
statistical measure that captures global distribution of
color in an image (Swain and Ballard, 1991; Gevers and
Stokman, 2004). One of the main drawbacks of the histo-
gram-based approaches is that the spatial distribution
and local variations in color are ignored. Local spatial var-
iation of pixel intensity is commonly used to capture tex-
ture information in an image. Grayscale Co-occurrence
Matrix (GCM) is a well-known method for texture extrac-
tion in the spatial domain (Haralick et al., 1973). A GCM
stores the number of pixel neighborhoods in an image that
have a particular grayscale combination. Let I be an image
and let p and Np respectively denote any arbitrary pixel and
its neighbor in a given direction. If GL denotes the total
number of quantized gray levels and gl denotes the individ-
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ual gray levels, where, gl 2 {0, . . . ,GL � 1}, then each com-
ponent of GCM can be written as follows:

gcmði; jÞ ¼ Prððglp; glNp
Þ ¼ ði; jÞÞ ð1Þ

gcm(i, j) is the number of times the gray level of a pixel p
denoted by glp equals i, and the gray level of its neighbor
Np denoted by glNp

equals j, as a fraction of the total num-
ber of pixels in the image. Thus, it estimates the probability
that the gray level of an arbitrary pixel in an image is i, and
that of its neighbor is j. One GCM matrix is generated for
each possible neighborhood direction, namely, 0�, 45�, 90�
and 135�. Average and range of 14 features like Angular
Second Moment, Contrast, Correlation, etc., are generated
by combining all the four matrices to get a total of 28 fea-
tures (Haralick et al., 1973). In the GCM approach for tex-
ture extraction, color information is completely lost since
only pixel gray levels are considered.

To incorporate spatial information along with the color
of image pixels, a feature called color correlogram has
recently been proposed. It is a three dimensional matrix
that represents the probability of finding pixels of any
two given colors at a distance ‘d’ apart (Huang et al.,
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1997). Auto correlogram is a variation of correlogram,
which represents the probability of finding two pixels with
the same color at a distance ‘d’ apart. This approach can
effectively represent color distribution in an image. How-
ever, correlogram features do not capture intensity varia-
tion. Many image databases often contain both color as
well as gray scale images. The color correlogram method
does not constitute a good descriptor in such databases.

Another method called Color Co-occurrence Matrix
(CCM) has been proposed to capture color variation in
an image (Shim and Choi, 2003). CCM is represented as
a three-dimensional matrix, where color pair of the pixels
p and Np are captured in the first two dimensions of the
matrix and the spatial distance ‘d’ between these two pixels
is captured in the third dimension. This approach is a gen-
eralization of the color correlogram and reduces to the
pure color correlogram for d = 1. CCM is generated using
only the Hue plane of the HSV (Hue, Saturation and Inten-
sity Value) color space. The Hue axis is quantized into HL
number of levels. If individual hue values are denoted by
hl, where hl 2 {0, . . . ,HL � 1}, then each component of
CCM can be written as follows:

ccmði; jÞ ¼ Prððhlp; hlNpÞ ¼ ði; jÞÞ ð2Þ

Four matrices representing neighbors at angles 0�, 90�,
180� and 270� are considered. This approach was further
extended by separating the diagonal and the non-diagonal
components of CCM to generate a Modified Color Co-
occurrence Matrix (MCCM). MCCM, thus, may be writ-
ten as follows:

MCCM ¼ ðCCMD;CCMNDÞ ð3Þ

Here, CCMD and CCMND correspond to the diagonal and
off-diagonal components of CCM. The main drawback of
this approach is that, like correlogram, it also captures only
color information and intensity information is completely
ignored.

An alternative approach is to capture intensity variation
as a texture feature from an image and combine it with
color features like histograms using suitable weights
(Manjunath et al., 2001). One of the challenges of this
approach is to determine suitable weights since these are
highly application-dependent. In certain applications like
Content-based Image Retrieval (CBIR), weights are often
estimated from relevance feedback given by users (Aksoy
and Haralick, 2000; Wu and Zhang, 2002). While relevance
feedback is sometimes effective, it makes the process of
image retrieval user-dependent and iterative. There is also
no guarantee on the convergence of the weight-learning
algorithms. In order to overcome these problems, research-
ers have tried to combine color and texture features
together during extraction.

Palm (2004) proposed two approaches for capturing
color and intensity variations from an image using the
LUV color space. In the Single-channel Co-occurrence
Matrix (SCM), variations for each color channel, namely,
L, U and V are considered independently. In the Multi-
channel Co-occurrence Matrix (MCM), variations are cap-
tured taking two channels at a time – UV, LU and LV.
Since the LUV color space separates out chrominance (L
and U) from luminance (V), SCM in effect, generates one
GCM and two CCMs from each image independently.
As a result, correlation between the color channels is lost.
However, in MCM, the count of pairwise occurrences of
the values of different channels of the color space is cap-
tured. Thus, each component of MCM can be written as
follows:

mcmUVði; jÞ ¼ Prððup; vNpÞ ¼ ði; jÞÞ ð4aÞ
mcmLUði; jÞ ¼ Prððlp; uNpÞ ¼ ði; jÞÞ ð4bÞ
mcmLVði; jÞ ¼ Prððlp; vNpÞ ¼ ði; jÞÞ ð4cÞ

Here, mcmUV(i, j) is the number of times the U chromatic-
ity value of a pixel p denoted by up equals i, and the V chro-
maticity value of its neighbor Np denoted by vNp equals j, as
a fraction of the total number of pixels in the image. Sim-
ilarly, mcmLU(i, j) and mcmLV(i, j) are defined. One MCM
matrix is generated for each of the four neighborhood
directions, namely, 0�, 45�, 90� and 135�.

Deng and Manjunath (2001) proposed a two-stage
method called JSEG, which combines color and texture
after image segmentation. In the first stage, colors are
quantized to the required levels for differentiating between
various regions of an image. Pixel values of the regions are
then replaced by their quantized color levels to form a
color map. Spatial variation of color levels between differ-
ent regions in the map is viewed as a type of texture com-
position of the image. Yu et al. (2002) suggested the use of
color texture moments to represent both color and texture
of an image. This approach is based on the calculation of
Local Fourier Transformation (LFT) coefficients. Eight
templates equivalent to LFT are operated over an image
to generate a characteristic map of the image. Each tem-
plate is a 3 · 3 filter that considers eight neighbors of the
current pixel for LFT calculation. First and second order
moments of the characteristic map are then used to gener-
ate a set of features.

In this paper, we propose an integrated approach for
capturing spatial variation of both color and intensity lev-
els in the neighborhood of each pixel using the HSV color
space. In contrast to the other methods, for each pixel and
its neighbor, the amount of color and intensity variation
between them is estimated using a weight function. Suitable
constraints are satisfied while choosing the weight function
for effectively relating visual perception of color and the
HSV color space properties. The color and intensity varia-
tions are represented in a single composite feature known
as Integrated Color and Intensity Co-occurrence Matrix
(ICICM). While the existing schemes generally treat color
and intensity separately, the proposed method provides a
composite view to both color and intensity variations in
the same feature. The main advantage of using ICICM is
that it avoids the use of weights to combine individual
color and texture features. We use ICICM feature in an
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image retrieval application from large image databases.
Early result on this work was reported in (Vadivel et al.,
2004a). In the next section, we describe the proposed fea-
ture extraction technique after introducing some of the
properties of the HSV color space. Choice of quantization
levels for color and intensity axes, selection of parameter
values and a brief overview of the image retrieval applica-
tion is given in Section 3. Retrieval performance of the pro-
posed scheme with labeled and unlabelled databases is
presented in Section 4, and we conclude in the last section
of the paper.

2. Integrated color and intensity co-occurrence matrix

We propose to capture color and intensity variation
around each pixel in a two-dimensional matrix called
Integrated Color and Intensity Co-occurrence Matrix
(ICICM). This is a generalization of the Grayscale Co-
occurrence Matrix and the Color Co-occurrence Matrix
techniques. For each pair of neighboring pixels, we con-
sider their contribution to both color perception as well
as gray level perception to the human eye. Some of the use-
ful properties of the HSV color space and their relationship
to human color perception are utilized for extracting this
feature. In the next sub-section, we briefly explain relevant
properties of the HSV color space. In the subsequent sub-
section, we describe how the properties can be effectively
used for generating ICICM.

2.1. Properties of the HSV color space

Sensing of light from an image in the layers of human
retina is a complex process with rod cells contributing to
scotopic or dim-light vision and cone cells to photopic or
bright-light vision (Gonzalez and Woods, 2002). At low-
levels of illumination, only the rod cells are excited so that
only gray shades are perceived. As the illumination level
increases, more and more cone cells are excited, resulting
in increased color perception. Various color spaces have
been introduced to represent and specify colors in a way
suitable for storage, processing or transmission of color
information in images. Out of these, HSV is one of the
models that separate out the luminance component (Inten-
sity) of a pixel color from its chrominance components
(Hue and Saturation). Hue represents pure color, which
is perceived when incident light is of sufficient illumination
and contains a single wavelength. Saturation gives a mea-
sure of the degree by which a pure color is diluted by white
light. For light with low illumination, corresponding inten-
sity value in the HSV color space is also low.

The HSV color space can be represented as a hexacone,
with the central vertical axis denoting the luminance com-
ponent, I (often denoted by V for Intensity Value). Hue, is
a chrominance component defined as an angle in the range
[0,2p] relative to the red axis with red at angle 0, green at
2p/3, blue at 4p/3 and red again at 2p. Saturation, S, is
the other chrominance component, measured as a radial
distance from the central axis of the hexacone with value
between 0 at the center to 1 at the outer surface. For zero
saturation, as the intensity is increased, we move from
black to white through various shades of gray. On the
other hand, for a given intensity and hue, if the saturation
is changed from 0 to 1, the perceived color changes from a
shade of gray to the most pure form of the color repre-
sented by its hue. When saturation is near 0, all the pixels
in an image look alike even though their hue values are dif-
ferent. As we increase saturation towards 1, the colors get
separated out and are visually perceived as the true colors
represented by their hues. Low saturation implies presence
of a large number of spectral components in the incident
light, causing loss of color information even though the
illumination level is sufficiently high. Thus, for low values
of saturation or intensity, we can approximate a pixel color
by a gray level while for higher saturation and intensity, the
pixel color can be approximated by its hue. For low inten-
sities, even for a high saturation, a pixel color is close to its
gray value. Similarly, for low saturation even for a high
value of intensity, a pixel is perceived as gray. We use these
properties to estimate the degree by which a pixel contrib-
utes to color perception and gray level perception.

One possible way of capturing color perception of a
pixel is to choose suitable thresholds on the intensity and
saturation. If the saturation and the intensity are above
their respective thresholds, we may consider the pixel to
have color dominance; else, it has gray level dominance.
However, such a hard thresholding does not properly cap-
ture color perception near the threshold values. This is due
to the fact that there is no fixed level of illumination above
which the cone cells get excited. Instead, there is a gradual
transition from scotopic to photopic vision. Similarly, there
is no fixed threshold for the saturation of cone cells that
leads to loss of chromatic information at higher levels of
illumination caused by color dilution. We, therefore, use
suitable weights that vary smoothly with saturation and
intensity to represent both color and gray scale perception
for each pixel.
2.2. Generation of ICICM

ICICM is a two-dimensional matrix which considers rel-
ative contribution to color and gray level perception for
each pixel p and its neighbor Np. ICICM consists of four
sub matrices and can be represented as follows:

ICICM ¼
ICICMCC ICICMCI

ICICMIC ICICMII

� �
ð5Þ

Here ICICMCC represents color perception of the pixel p
and color perception of its neighbor Np. ICICMCI repre-
sents color perception of the pixel p and gray level percep-
tion of its neighbor Np. ICICMIC and ICICMII are
similarly defined.

Let HL be the number of quantized levels of Hue and GL
be the number of quantized levels of Intensity derived from



Fig. 1. Logical view of ICICM matrix.
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the HSV color space. Each component of ICICMCC,
ICICMCI, ICICMIC and ICICMII can be written as follows:

icicmCCði; jÞji¼0...HL�1;j¼0...HL�1 ¼ Prððhlp;hlNpÞ ¼ ði; jÞÞ ð6aÞ
icicmCIði; jÞji¼0...HL�1;j¼0...GL�1 ¼ Prððhlp; glNp

Þ ¼ ði; jÞÞ ð6bÞ
icicmICði; jÞji¼0...GL�1;j¼0...HL�1 ¼ Prððglp; hlNpÞ ¼ ði; jÞÞ ð6cÞ
icicmIIði; jÞji¼0...GL�1;j¼0...GL�1 ¼ Prððglp; glNpÞ ¼ ði; jÞÞ ð6dÞ

Thus, icicmCC(i, j) is the number of times the color per-
ception of a pixel p denoted by hlp equals i, and the color
perception of its neighbor Np denoted by hlNp equals j, as a
fraction of the total number of pixels in the image. Simi-
larly, icicmCI(i, j) is the number of times the color percep-
tion of a pixel p denoted by hlp equals i, and the gray
level perception of its neighbor Np denoted by glNp

equals
j, as a fraction of the total number of pixels in the image.

The dimension of the matrix ICICM is determined by
the number of quantization levels HL and GL of the Hue
and the Intensity axes, respectively. HL and GL can be
computed as follows:

HL ¼ b2p=QHc þ 1 ð7Þ
GL ¼ b255=QIc þ 1 ð8Þ

Here QH and QI are the quantization factors for Hue and
Intensity, respectively. The dimension of the complete ma-
trix ICICM is (HL + GL)2. For QH = 2 and QI = 64, we
get HL = 4 and GL = 4, resulting in DIMICICM = 64.

The ICICM matrix is updated using a weight function
Wcol (S, I) that estimates the extent of color perception of
a pixel. Based on our observation in Section 2.1, the weight
should be a function of both saturation and intensity. Also,
considering the preceding observation on the properties of
the HSV color space, we introduce the following con-
straints on the nature of Wcol(S, I):

a. Wcol(S, I) 2 [0, 1].
b. For S1 > S2, Wcol(S1, I) > Wcol(S2, I).
c. For I1 > I2, Wcol(S, I1) > Wcol(S, I2).
d. Wcol(S, I) changes slowly with S for high values of I.
e. Wcol(S, I) changes sharply with S for low values of I.

Constraints a–c follow directly from the properties of
the HSV color space. Constraint d follows from the fact
that when intensity is high, the loss of color perception is
only due to dilution of color by white light. On the other
hand, constraint e is required since for low intensity, loss
of color perception is a combined effect of cone cell de-acti-
vation and color dilution. While a number of functions
may be chosen that satisfy the above relationships, after
detailed analysis with large class of images, the following
weight function was found to be quite satisfactory (Vadivel
et al., 2005).

W colðS; IÞ ¼
Sr1�ð255=IÞr2

for I 6¼ 0

0 for I ¼ 0

(
ð9Þ
where r1 and r2 are constants. The intensity weight of a
pixel is computed as a complement of the color weight as
given below

W intðS; IÞ ¼ 1� W colðS; IÞ ð10Þ

The values of r1 and r2 depend on the particular applica-
tion in which ICICM is used. In a later section (Section 3),
we discuss suitable choices of r1 and r2 for an image retrie-
val application.
2.3. Implementation details

The choice of parameters QH and QI is dependent on the
application for which ICICM is used. Any application that
requires fine-grained quantization of the hue values, a low
QH is chosen, resulting in a higher value of HL. Choice of
QI is also made in a similar manner. A logical view of
ICICM considering QH = 2, QI = 64 and hence, HL = 4,
GL = 4, is shown in Fig. 1. In this figure, the four ranges
of Hue corresponding to the quantized values 0–3 are
[0,p/2), [p/2,p), [p, 3p/2) and [3p/2,2p). The four ranges
have been represented by the symbols P, Q, R and S. The
four levels of Intensity (0–3) are represented by K, X, Y
and W, where K and W correspond to Black and White.
X and Y represent two intermediate levels of gray. For
any given combination of current pixel p and neighboring
pixel Np, one component of each sub-matrix is updated.
The particular component to be updated in ICICMCC is
the one for which the hue value marked in the lower trian-
gle of a small box in Fig. 1 equals hlp and the hue value
marked in the upper triangle equals hlNp . The component
to be updated in ICICMCI is the one for which the hue
value marked in the lower triangle equals hlp and the gray
level marked in the upper triangle equals glNp

. Components
to be updated in the other two sub-matrices are chosen in a
similar manner.

The quantum of update for the matrix ICICM is deter-
mined by the color and the intensity weights of the current
pixel p and the neighboring pixel Np. ICICMCC entries are



Fig. 2. Algorithm for updating ICICM.
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updated by the sum of the color weight of p and the color
weight of Np. An ICICMCI entry is updated by the sum
of the color weight of p and the intensity weight of Np.
ICICMIC and ICICMII entries are updated similarly. An
algorithm showing the update process for the complete
Integrated Color and Intensity Co-occurrence Matrix is
shown in Fig. 2.

It may be observed from the figure that each pixel in the
image contributes to an entry in each of the four sub-matri-
ces. The quantum of update in each case is dependent on
the color perception and intensity perception of the two
pixels. We generate ICICM matrix for four orientations
at angles of 0�, 45�, 90� and 135�, respectively. However,
the four matrices are updated simultaneously to ensure that
the complexity of the algorithm is linear with respect to the
size of the image i.e. O(n) – n is the number of pixels in the
image. For images of size 350 · 240, the average time
required for ICICM construction on a Pentium IV
1.8 GHz computer running Linux 0.23 s.

At the end of the update process, each ICICM matrix is
normalized with respect to the image size so that each com-
ponent represents the probability of occurrence of a given
combination as mentioned in Eqs. (6a)–(6d). The following
example illustrates updating of ICICM carried out by a
typical pixel.
1 http://vismod.media.mit.edu/vismod/imagery/VisionTexture/
vistex.html
2.3.1. Example

Consider three choices of H, S and V values for a pixel p
and its neighboring pixel Np shown in Table 1. The entries
of each of the sub-matrices ICICMCC, ICICMCI, ICICMIC

and ICICMII that are updated due to this pixel and the
corresponding weights are also shown in the table.

For instance, the third row of the table correspond
to hp = 2p, sp = 0.5, vp = 100 and hNp ¼ 0:4, sNp ¼ 0:9,
vNp ¼ 200. Using Eqs. (7) and (8), hlp = 3, glp = 1,
hlNp ¼ 0 and glNp

¼ 3. Using Eqs. (9) and (10),
ICICMCC[0, ,3] is thus updated with W p
colðS; IÞþ

W Np

colðS; IÞ ¼ 0:858þ 0:987 ¼ 1:845. The other components
are similarly updated.
3. Application of ICICM

The Integrated Color and Intensity Co-occurrence
Matrix can be used in a number of image processing and
pattern recognition problems. We have considered Con-
tent-based Image Retrieval applications to study the effec-
tiveness of the ICICM matrix. In the following two sub-
sections, we show the effect of quantization levels and the
choice of parameters r1 and r2 in Eq. (9) on image retrieval
performance. We use two standard metrics, namely, recall
and precision for measuring performance, which are
defined as follows.

Recall ¼ No: of Relevant Images Retrieved

Total No: of Relevant Images
ð11Þ

Precision ¼ No: of Relevant Images Retrieved

Total No: of Images Retrieved
ð12Þ

In the last sub-section, we give an overview of a content-
based image retrieval system developed by us.
3.1. Number of quantization levels

To determine the number of components that effectively
represents color weight and intensity weight for ICICM, we
have used database (MIT Texture database1) containing
122 images. The database has 10 image categories each
containing approximately 12 images. Any image belonging
to the same category as a query image is assumed to be a
member of the relevant set. We have considered five differ-
ent combinations of hue and intensity levels – HL and GL.
For example, the combination (6, 2) means that the color
weight-color weight will update a (6 · 6) area, intensity
weight-color weight updates a (2 · 6) area, color weight-
intensity weight updates a (6 · 2) area and intensity
weight-intensity weight updates a (2 · 2) area of ICICM.
In Fig. 3, we plot precision vs. recall for different combina-
tions of HL and GL on the test database. It may be noted
from the figure that the combination 2 · 6 gives higher pre-
cision compared to the others. The reason is that the data-
base contains a large number of texture-rich images. The
corresponding values of QH and QI of Eqs. (7) and (8)
are 5 and 50, respectively.

Other values of the quantization factors result in differ-
ent numbers of color and gray levels. If the nature of the
image database is known a priori, then the values of HL
and GL can be appropriately chosen. For image databases
with predominantly color images, more number of levels
may be assigned to color compared to intensity. On the
other hand, for databases with texture rich images, one

http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
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Table 1
ICICM components and weight updates for sample HSV values

HSV (p) HSV N(p) ICICM component

ICICMCC (i, j,Weight) ICICMCI (i, j,Weight) ICICMIC (i, j,Weight) ICICMII (i, j,Weight)

(0.4,0.9,200) (1.6p, 0.0,180) (0,3,0.987) (0,2,1.987) (3,3,0.013) (3,2,1.013)
(1.6p, 0.0,180) (2p, 0.5,100) (3,3,0.987) (3,1,0.013) (2,3,1.987) (2,1,1.013)
(2p, 0.5,100) (0.4,0.9,200) (3,0,1.845) (3,3,0.871) (1,0,1.129) (1,3,0.155)
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Fig. 3. Precision vs. recall for different combinations of HL and GL.

Fig. 4. ICICM based retrieval for different values of r1 and r2 (a) mean
recall and (b) mean precision.

Fig. 5. Variation of Wcol(S,I) with saturation and intensity.
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can choose higher number of gray levels. In our subsequent
discussions, we make HL equal to GL, thus giving equal
importance to both color and intensity. Further, we chose
QH and QI in Eqs. (7) and (8) such that HL = GL = 4,
resulting in a 64-component ICICM matrix. This is done
to make the number of feature components comparable
to other types of features proposed in the literature.

3.2. Choice of weight function parameters

In order that Wcol(S, I) of Eq. (9) satisfies conditions
(a)–(e), r1 should take a value slightly higher than 0.0
and r2 should take a value slightly less than 1.0. To deter-
mine the best combination of r1 and r2, we have performed
another set of experiments on the MIT texture database.
We have used different combinations of r1 and r2 and cal-
culated recall and precision for 10 nearest neighbors for
each query. This was repeated for 25 queries. The average
recall and precision values are plotted in Figs. 4a and b. It
is seen that a combination of r1 = 0.1 and r2 = 0.85 gives
the best average recall and precision. The recall value is
higher by at least 5% than the other combinations. The pre-
cision is also at least 5% higher than the other combina-
tions. It is further observed that for the same value of r1,
recall and precision vary slowly with r2. On the other hand,
for the same value of r2, recall and precision vary sharply
with r1. We, therefore, selected r1 = 0.1 and r2 = 0.85 in
the proposed CBIR system. A plot of Wcol(S, I) for differ-
ent values of S and I is shown in Fig. 5 with r1 = 0.1 and
r2 = 0.85. It is seen that the requirements (a)–(e) of Section
2.2 are correctly satisfied by this function.

It is seen from Figs. 3 and 4 that (HL, GL) combinations
of (2,6) and (4, 4) while (r1, r2) combinations in the range
(0.05, 0.8)–(0.15,0.9) give good retrieval results. For ease
of understanding we use the values of HL and GL instead



Table 2
Precision vs. recall for different combinations of (r1, r2) with HL = 2 and GL = 6

r1 r2 Recall

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average precision
0.05 0.8 0.96 0.94 0.91 0.88 0.85 0.84 0.80 0.78 0.71 0.68
0.05 0.85 0.97 0.95 0.92 0.90 0.89 0.88 0.85 0.82 0.81 0.80
0.05 0.9 0.96 0.94 0.90 0.87 0.84 0.82 0.78 0.74 0.70 0.67
0.1 0.8 0.99 0.96 0.94 0.91 0.88 0.85 0.84 0.80 0.78 0.71
0.1 0.85 0.99 0.97 0.95 0.92 0.9 0.89 0.88 0.85 0.82 0.81

0.1 0.9 0.99 0.96 0.94 0.90 0.87 0.84 0.82 0.78 0.74 0.70
0.15 0.8 0.96 0.94 0.91 0.88 0.85 0.84 0.80 0.78 0.71 0.68
0.15 0.85 0.97 0.95 0.92 0.9 0.89 0.88 0.85 0.82 0.81 0.80
0.15 0.9 0.96 0.94 0.90 0.87 0.84 0.82 0.78 0.74 0.70 0.67

Table 3
Precision vs. recall for different combinations of (r1, r2) with HL = 4 and GL = 4

r1 r2 Recall

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average precision
0.05 0.8 0.91 0.88 0.86 0.84 0.80 0.76 0.73 0.69 0.67 0.66
0.05 0.85 0.90 0.88 0.85 0.84 0.78 0.75 0.73 0.68 0.65 0.64
0.05 0.9 0.91 0.88 0.86 0.84 0.80 0.76 0.73 0.69 0.64 0.63
0.1 0.8 0.96 0.94 0.92 0.89 0.86 0.85 0.81 0.76 0.74 0.70
0.1 0.85 0.96 0.96 0.92 0.90 0.88 0.85 0.82 0.79 0.77 0.74

0.1 0.9 0.96 0.94 0.91 0.88 0.86 0.84 0.80 0.76 0.73 0.69
0.15 0.8 0.94 0.91 0.88 0.86 0.84 0.80 0.76 0.73 0.69 0.67
0.15 0.85 0.93 0.90 0.88 0.85 0.84 0.78 0.75 0.73 0.68 0.65
0.15 0.9 0.93 0.91 0.88 0.86 0.84 0.80 0.76 0.73 0.69 0.64
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of the corresponding values of QH and QI. We have further
cross-validated the results by studying the retrieval perfor-
mance for different combinations of r1, r2, QH and QI on a
subset of the texture database. The results on this valida-
tion dataset are shown in Tables 2 and 3. It is noted that
for r1 = 0.1 and r2 = 0.85, we get better average precision
for both the combinations of HL and GL compared to
other values of r1 and r2. Also, for each combination of
r1 and r2, the (HL, GL) combination of (2, 6) gives better
result.
3.3. Web-based image retrieval application

We have developed a web-based application for content-
based image retrieval using ICICM. The application is
available in the public domain2. A query in our application
is specified by an example image. The number of images to
be retrieved and displayed can be selected as an input
parameter from the page. Various distance measures can
also be chosen for ranking the images. Since image features
typically have a large number of dimensions, several prop-
erties of high-dimensional Euclidean space affect the useful-
ness of various distance metrics. It has been shown that in
2 http://www.imagedb.iitkgp.ernet.in/icicm.php
CBIR applications, Euclidean distance and Vector Cosine
Angle distance have similar performance in nearest neigh-
bor queries (Qian et al., 2004). This is due to the fact that
for a given query, ranking of a set of vectors by these two
distance metrics is similar if the variance in the vector
norms is low. In high dimensions, variance of norms of fea-
ture vectors tends to be smaller. In an earlier work, we have
compared the retrieval performance of various distance
measures, namely, Manhattan distance, Euclidean dis-
tance, Vector Cosine Angle distance and Histogram Inter-
section distance on a large image database (Vadivel et al.,
2003). It was observed that although the results are compa-
rable, Manhattan distance achieved a higher precision of
retrieval. The number of color and intensity levels that
can be used for generating ICICM of query image can also
be dynamically selected for each query from the interface.
For a given query image, the nearest neighbor result set
is retrieved from the database and displayed. The value dis-
played below the retrieved images is the actual vector-to-
vector distance computed by using the measure selected
from the option. Depending on the distance metric chosen,
the value is either a similarity measure (for Histogram
Intersection and Vector Cosine Angle Distance) or a dis-
similarity measure (for Euclidean and Manhattan Dis-
tance). The retrieval process considers all the parameters
selected in the options boxes of the web page. Our applica-

http://www.imagedb.iitkgp.ernet.in/icicm.php
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tion provides a utility to upload an external image file and
use the image as a query on our database. Thus, our appli-
cation is different from all other reported research work in
the field of content-based image retrieval since we provide a
platform for repeating our experiments as well as for run-
ning new queries with images provided by the reader.
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Fig. 6. Recall vs. mean precision on a labeled database of 10,000 images.
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4. Retrieval performance

We have used two separate of image databases for mea-
suring the performance of ICICM in content-based image
retrieval applications. The first is a database contains
10,000 images from IMSI3 master clips. The second data-
base was generated by crawling 28,000 images from the
World Wide Web. In the next two sub-sections, we present
our experimental results using these databases.
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Fig. 7. Recall vs. standard deviation of precision on a labeled database of
10,000 images.
4.1. Retrieval performance with labeled database

In the first set of experiments, we use general-purpose
images obtained from IMSI. The images are available on
CDs with some pre-classification. Similar types of images
are kept in the same folder structure. These images were
manually checked, re-classified if necessary, and finally a
database of 10,000 images was created contains 71 classes.
Each class contains between 50 and 600 images. We also
selected a set of 2500 query images out of these 10,000
images for computing recall and precision. For each query
image, the ground-truth has been generated by manually
determining the relevant set in advance. Ten independent
observers crosschecked these relevant sets and errors in cat-
egorization were corrected based on feedback from the
observers before performing the experiments.

We compare the retrieval results of the proposed
method with two other Co-occurrence matrix-based
approaches, namely, MCCM and MCM. We also consider
the Color Structure Descriptor (CS) based method-an
MPEG-7 color structure descriptor proposed by Messing
et al. (2001), two color histograms, namely, H(RG) and
Hue (G) proposed by Gevers and Stokman (2004) as well
as the LFT-based method described in Section 1. In
Fig. 6, mean precision of retrieval for different values of
recall have been plotted where the mean value was com-
puted from the set of 2500 query images with ground-truth.
From this figure it is noted that the performance of CS is
close to MCM. It is also observed that ICICM outperforms
LFT and MCCM by more than 15%. MCM also has high
precision of retrieval. But it is still about 4–5% less com-
pared to ICICM. Another interesting observation is that,
performance of MCCM falls sharply with this set of
images.

Besides having high value of mean precision, it is also
important for image retrieval systems to have low standard
deviation of precision so that the quality of retrieval
3 International Microcomputer Software Inc. (http://www.imsisoft.com/)
appears equally good to different observers using different
query images. To study this, standard deviation of preci-
sion for all the four methods has been measured and shown
in Fig. 7. It is observed that standard deviation of precision
for ICICM is low compared to that of the other methods.
MCM and CS also have a low value of standard deviation.
However, LFT and MCCM do not exhibit good perfor-
mance for this set of results.

4.2. Retrieval performance with unlabelled database

We have also tested the performance of the ICICM
based image retrieval system with an even larger database
of about 28,000 images. These images have been obtained
using a crawler from various Internet sites, having no priori
classification. Since no ground truth on the relevant sets is
available on such a large database, it is not possible to
determine the recall and precision values. However, for
estimating retrieval performance on this unlabelled data-
base, we considered visual content of retrieved result for
measuring precision. Given a query, the number of visually
close images for 2, 5, 10, and 20 nearest neighbors were
used for determining precision of retrieval. In order to
reduce subjectivity, we chose 50 images as queries with dif-
ferent visual content for performing experiments. Ten inde-
pendent users were given five images each as query. Each
user, using their five images, determined the precision

http://www.imsisoft.com/
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based on visual content for various nearest neighbors for
each type of feature. Finally, the average precision was
computed.

The average precision values for 2, 5, 10 and 20 nearest
neighbors are shown in Fig. 8. Since MCM and CS were
found to have good performance in the previous set of
results, we consider them in this set also. A few other alter-
native methods have also been added in this comparison
which include Multimedia Retrieval Markup Language
with four-level relevance feedback (MRML) proposed by
Mueller et al. (2001), the Multiple Multi-channel CBIR
System (MMCS) proposed by French et al. (2003), the
Adaptive Binning Color Histogram (ABCH) technique
proposed by Leow and Li (2004). We also consider a
method using a combination of color histogram and
Daubechies’ wavelet based texture feature (Vadivel et al.,
2004b). It is noted that, when tested with a large image
database having wide variety of images, precision of the
image retrieval techniques deteriorates considerably. This
is in contrast to our results shown in Fig. 6 on 10,000
images, which have been categorized into different groups.
This can be explained by noting that in the labeled data-
base of 10,000 images, a number of relevant images for
each query are already present. A large percentage of these
relevant images are retrieved, resulting in high precision
and recall values. However, even with an uncontrolled
image database, performance of ICICM is found to be bet-
ter compared to the other approaches.
5. Conclusions

We have proposed an integrated color and intensity
based co-occurrence matrix and shown its usefulness in
image retrieval applications. We effectively use some of
the properties of the HSV space and their relationship to
human visual perception for representation of color and
intensity in the co-occurrence matrix. Each pixel and its
neighbor contribute to both color as well as gray level per-
ception in the neighborhood. Four components of the co-
occurrence matrix are updated with relative weights of
color and gray level perception. The relative numbers of
color and intensity levels can be tuned depending on the
nature of the image database.

We have made extensive comparative studies of the pro-
posed method with other recently proposed variants of the
co-occurrence matrix that consider color and intensity. A
few techniques that do not use co-occurrence matrix but
have reported good performance, were also considered
for comparison. A web-based application has been devel-
oped which is freely available to the readers for performing
experiments with images in our database as well as with
externally uploaded images.

The proposed color-texture descriptors can be suitably
used for other image processing and pattern recognition
problems as well. We would like to apply the proposed
approach of generating ICICM in a number of image clas-
sification applications in future.
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