
Fifth International Conference on Document Analysis and Recognition (ICDAR99), Bangalore, India, 1999, pp. 173-176

A Two-step Algorithm and its Parallelization for the Generation of Minimum
Containing Rectangles for Document Image Segmentation

Shamik Sural, NIIT Limited, 6B Pretoria Street, Calcutta 700 071, India.
P.K.Das, Dept. of Computer Science & Engineering, Jadavpur University, Calcutta 700 032, India.

Abstract

In document processing, segmentation is done to uniquely
identify each foreground connected region of an image by
specifying its minimum containing rectangle (MCR).
MCR is the rectangle with minimum dimensions that
completely encloses a geometric pattern. In this paper, we
present a two-step MCR detection algorithm and its
parallelization method. The first step determines the
boundary of each connected component in a document
image. This reduces resource requirements and speeds up
the subsequent rectangle detection step. The rectangle
detection step determines MCRs of the connected
components from the detected boundaries. A comparison
is made between a single-step and the two-step
approaches of MCR detection. Both the boundary
detection and the rectangle detection steps are
parallelized and implemented on transputers to reduce
the total processing time.

Keywords : Document image processing, Segmentation,
Minimum containing rectangle, Parallel processing,
Transputer.

1. Introduction

Determination of Minimum Containing Rectangles
(MCR) of connected regions is required for both top-
down and bottom-up approaches to document image
segmentation [4-6,8]. Top-down is a knowledge-based
approach in which a document image is recursively
segmented into regions and sub-regions. A Run Length
Smearing Algorithm (RLSA) is often used to connect
black pixels which are separated by less than a threshold
number of white pixels to generate a smeared image of the
document [7]. The MCRs of the smeared regions are then
determined for identification of the individual blocks.
Bottom-up, on the other hand, is a data driven approach in
which the first step is to identify the individual connected
components like characters and images. Each connected
component is represented by its MCR. There are,
however, a few other techniques which follow a hybrid
approach to document segmentation.

Most of the document processing applications require a
real-time response. High-end sequential computers are
normally used in an attempt to achieve this speed of
computation. However, it is our observation, that, the
problem of document image processing is inherently
parallel in nature. Processing time can be greatly reduced
by exploiting this parallelism in different stages.

In this paper, we propose a two-step approach for the
determination of MCRs of connected document regions.
In the next section, we describe the two-step MCR
detection algorithm. Parallelization of the boundary
detection and the rectangle detection steps are discussed
in section 3. In section 4, we present the implementation
results on a transputer network and draw conclusions from
our work.

2. Two-step MCR detection algorithm

In the first step of MCR detection, the connected
region boundaries are determined. We propose the
following algorithm for boundary detection from a two-
tone document image.
BEGIN ALGORITHM
FOR i = 1 TO no_of_scan_line
 FOR j = 1 TO no_of_pxl_per_scan_line

IF pxl[i,j] = 1 AND pxl[i,j-1] = 0 SET pxl[i,j] = 0
ELSE
IF pxl[i,j] = 0 AND pxl[i,j-1] = 1 SET pxl[i,j-1] = 0

END ALGORITHM
Black pixels (represented by 1’s) on each white-black

horizontal transition of the image are replaced by white
pixels (represented by 0’s) at this stage and a new bitmap
is generated. The above algorithm is repeated for the new
bitmap, along each pixel position for all scan lines. Black
pixels on each white-black transition, both horizontal and
vertical, of the original image are replaced by white pixels
and a transformed bitmap is generated. The pixel values
of the original and the transformed bitmaps are then
logically EXCLUSIVE-ORed to generate a boundary
bitmap.

Once the boundary bitmap is generated, the number of
pixels in the image is greatly reduced. We then detect the
bounding box of each pattern boundary. The following

recursive algorithm is proposed to determine the MCRs
from a boundary bitmap generated in the last step.
BEGIN ALGORITHM
FOR i = 1 TO no_of_scan_line
 FOR j = 1 TO no_of_pxl_per_scan_line

IF pxl[i,j] = 1
 SET MAX_X = MIN_X = i
 SET MAX_Y = MIN_Y = j
 CALL PROC MCR(i,j)

PROC MCR (cur_x, cur_y)
BEGIN PROCEDURE
 FOR 8 ngbr_pxl OF pxl[cur_x, cur_y]

IF ngbr_pxl = 1
 IF ngbr_pxl_x > MAX_X

SET MAX_X= ngbr_pxl_x
 IF ngbr_pxl_x < MIN_X

SET MIN_X = ngbr_pxl_x
 IF ngbr_pxl_y > MAX_Y

SET MAX_Y = ngbr_pxl_y
 IF ngbr_pxl_y < MIN_Y

SET MIN_Y = ngbr_pxl_y
 SET ngbr_pxl = 0
 CALL PROC MCR(ngbr_pxl_x, ngbr_pxl_y)

END PROCEDURE
END ALGORITHM

This algorithm uses local information around each
black pixel to extend the MCR for the connected
component. A number of other boundary detection and
region labelling algorithms are available in the literature
[1]. The proposed two-step algorithm has the advantage
that it can detect any arbitrary shape and size of connected
component boundary. Even in the presence of multiple
pixels, none of the pixels is traversed more than once. The
suggested rectangle detection algorithm does not involve
searching and propagation, which is found to be time
consuming. We later show how the proposed algorithm is
also efficiently implemented on parallel processors.

The boundary detection step reduces the number of
black pixels in each connected region. The rectangle
detection algorithm, therefore, runs faster and requires
considerably less system memory. However, the two-step
approach works efficiently if the reduction in the number
of black pixels is substantial in the boundary detection
step. We make a performance comparison between the
two-step approach and a single step approach in which
MCRs are detected directly.

The total time for MCR detection in the single step
method is T1= trPs, where P is the total number of pixels
and s is the fraction of the total number of pixels in the
document image that are black. tr is the average time
for rectangle detection of a black pixel. The boundary
detection time, Tbd, depends on the number of connected
regions, n, in the document and is given by Tbd= tbn,

where tb is the average time for boundary detection of a
connected region. Assuming all the n connected regions to
be square in shape and equal in size, the time for rectangle
detection from the boundary bitmap is Trd= tr4n�(Ps/n).
Here each square is of size �(Ps/n)x�(Ps/n). The total
time for MCR detection in the two step method is T2= tbn
+ tr4n�(Ps/n). The ratio of time required in the two-step
and the single step method is T2/T1 = (tb/tr)[n/(Ps)] +
4�(n/Ps). Thus, the improvement in total time for MCR
detection is dependent both on the efficiency of the
algorithm and the nature of the document. For a specific
implementation of the algorithms, if the number of black
pixels in the document increases keeping the number of
connected regions unchanged, the ratio T2/T1 decreases,
signifying a better performance of the two-step approach.
Thus, for a larger document or for a document with higher
number of black pixels, a two-step approach is better.
Also, the performance of the two-step approach is better if
there are a small number of connected regions, each
containing a large number of black pixels. The reduction
in the number of black pixels can then be done effectively
by the pre-processing step. Thus, the performance of the
two-step approach is expected to be better for MCR
detection of run length smeared images than for bottom-
up connected component analysis. The time required for a
single-processor implementation of the MCR detection
algorithm using the single-step and the two-step
approaches for a scanned image and a smeared image is
shown in table I.

Table I MCR detection performance in the
single-step and the two-step approaches

No.
of

Step

Image
Type

Boundary
Detection

Time
(msec)

Rect.
Detection

Time
(msec)

MCR
Detection

Time
(msec)

Reduction
(msec)

One Original ------ 19488 19488 ------
One Smeared ------ 28828 28828 ------
Two Original 6792 11367 18159 1328
Two Smeared 6679 9990 16669 12159

3. Parallelization of the MCR detection
algorithm

We use a Multiple Instruction Multiple Data (MIMD)
architecture [3] using transputers as parallel processors for
MCR detection from document images. These processors
execute multiple instructions in parallel on different data
sets to reduce the total computation time. However,
additional time is required for initial distribution and
collection of data from all the processors. Inter-processor
communication time is also required for data exchange
during computation. If the computation to communication

time ratio is high, the effect of inter-processor
communication overhead is less. A higher number of
parallel processors can then be used to solve a problem
[2].

For the boundary detection problem, we use a data
partitioning in which there is an overlap of one scan line
of pixels at each data set boundary to avoid the
communication time overhead. Each processor can then
detect all the pixels in its data set without any inter-
processor communication during computation. The
overhead of transferring one extra scan line of pixels for
each data set boundary during initial data distribution is
negligible.

The rectangle detection step is also parallelized by
partitioning the image and submitting to a number of
processors. However, the partitioning is done in such a
way that no connected region overlaps two data sets since
post-processing of pixels on the data set boundaries is
difficult. Initially, the entire bitmap is partitioned into data
sets, each with almost equal number of pixels. Each
boundary is then checked to see if it is "clean". For a
"clean" boundary, the scan line does not contain any black
pixel. If a boundary is not clean, scan lines are searched
both above and below the nominal boundary to find a
clean scan line. When a clean scan line is found, the
corresponding data set boundary is shifted there. The
search is done for a certain maximum number of scan
lines for each boundary. If a clean boundary is not found
for a particular data set, it is added to the data set of the
neighbouring processor.

3.1. Boundary detection time

For the data partitioning discussed above, the
number of pixels allotted to the pth processor is :
X(p) = P/N + 1 For p = 1 and N

= P/N + 2 For p = 2,3,....,N-1 (1)
The number of pixels in a document image is usually very
high compared to the number of processors so that,
X(p) = P/N For p = 1,2,....N (2)
Since the N processors run in parallel, the total
computation time for boundary detection is
Tcomp(N)=tbn/N. Here we consider uniform distribution of
connected regions in the document.

Let ts be the setup time for data transfer and tx be the
inter-processor byte transfer time. Then, the
communication time for data distribution to the pth

processor is
td(p) = ts + tx(Ph/8)(Pv/N + 1) For p = 1 and N

= ts + tx(Ph/8)(Pv/N + 2) For p= 2,3,....,N-1 (3)
Ph and Pv are the number of pixels per scan line and
number of scan lines, respectively. Since most of the
bitmap file formats store pixels along each scan line as
bytes for two-tone images, a factor of eight is used to

arrive at the number of bytes from the number of pixels.
Again, since the number of pixels is high compared to the
number of processors,
td(p) = ts + tx(Ph/8)(Pv/N) For p = 1,2,...., N (4)

The total time for sequential data distribution to N
processors is tdd(N)= Nts + txP/8. Similarly, the data
collection time at the end of computation is tdc(N)= Nts +
txP/8. Thus, the total communication time for the
boundary detection step is Tcomm(N)= 2(Nts + txP/8).

The total time for boundary detection, Tbd(N), is
Tbd(N)= tbn/N + 2(Nts + txP/8). The number of processors
for which the total boundary detection time is minimized,
is Nmin =�[(tbn)/(2ts)]. We see that if the setup time ts
increases, Nmin decreases due to communication overhead.
On the other hand, if the number of connected regions, or
the average boundary detection time goes up, Nmin
increases. This implies that if the computation time is high
compared to the communication overhead, a larger
number of processors can be used to achieve a better
response time.

3.2. Rectangle detection time

Let mt be the maximum number of tries made for
detection of a clean scan line and tc be the average time
required to check whether a scan line is clean. We make
the worst case assumption that for each data set boundary,
a clean scan line is obtained only after searching mt
number of scan lines both above and below the nominal
boundary. We further assume that there exists at least one
data set for which the upper boundary is shifted by mt
scan lines above as well as mt scan lines below the
nominal boundary. The computation time for clean scan
line determination is Tc(N)= tc2Nmt.

The computation time for rectangle detection for the
processor with maximum number of pixels is Tr(N)= (P/N
+ 2mt)str. The total computation time for rectangle
detection, therefore, is Tcomp(N)=tc2Nmt + (P/N + 2mt)str.

The communication time required for data distribution
and data collection are the same as that for boundary
detection and is given by Tcomm(N)=2(Nts + txP/8).

The total time for rectangle detection including the
search time for detecting “clean” scan lines is Trd(N)=
tc2Nmt + (P/N + 2mt)str + 2(Nts + txP/8). The number of
processors for which the total rectangle detection time is
optimized is Nmin = �[(trsP)/2(ts + tcmt)]. We see that if the
setup time increases, Nmin decreases due to increase in
communication overhead. On the other hand, if the
number of black pixels or the average rectangle detection
time goes up, Nmin increases. We also see that the time for
finding clean scan lines for each data set boundary is a
processing overhead. Decreasing the maximum number of
tries reduces the search time but, in turn, increases the
probability of improper load balancing among processors.

This value is, therefore, set after a large number of test
runs.

3.3. MCR detection time

The total MCR detection time in the two-step approach
with N processors running in parallel is TMCR(N) = A
+ 2N(2ts + mttc) + (ntb + sPtr)/N, where A =
txP/2 + 2mtstr is a constant independent of N.
The number of processors for which the total MCR
detection time is optimized, is Nmin = �[(ntb +sPtr)/2(2ts +
mttc)]. The interpretation of the above result is similar to
that given for boundary detection and rectangle detection
steps.

4. Implementation results and conclusions

We have implemented the two-step MCR detection
algorithm on a T800 transputer-based system using
OCCAM. The speedup variation for boundary detection,
rectangle detection and complete MCR detection
algorithms with the number of processors are plotted in
figures 1, 2 and 3, respectively. We see that the boundary
detection time is reduced almost by a factor of the number
of processors. While the absolute time will depend on the
processor used, an important observation is that the total
computation time is high compared to the total
communication time. This implies that one can go for a
higher degree of parallelization to improve performance.

0
2
4
6
8

1 2 3 4 5 6 7 8
No. of Processors

Sp
ee

du
p

Figure 1. Speedup variation of the boundary
detection algorithm

0
2
4
6
8

1 2 3 4 5 6 7 8
No. of Processors

Sp
ee

du
p

Actual
Trend

Figure 2. Speedup variation of the rectangle
detection algorithm

0
2
4
6
8

1 2 3 4 5 6 7 8
No. of Processors

Sp
ee

du
p

Actual
Trend

Figure 3. Speedup variation of the complete
MCR detection algorithm

References

1. Chaudhuri, B.B. and D.Datta Majumder, “Two-tone image
processing and recognition”, Wiley Eastern, 1993, pp.
101-114.

2. Das, P. K. “Programming techniques and message passing
mechanism in distributed memory computer system”, Proc.
National Seminar on Parallel Computer Systems and Their
Applications, Calcutta, Oct. 1990, pp. 75-92.

3. Fox, G. C. et al, Solving problems on concurrent
processors, Prentice Hall, USA, 1988, pp. 17-38.

4. Lu, Y. “Machine printed character segmentation - an
overview”, Patt. Recogn., vol. 28, no. 1, 1995, pp. 67-80.

5. Nagy, G. “Teaching a computer to read”, Proc. 11th Int.
Conf. Patt. Recogn. (ICPR), Aug. 1992, pp. 225-229.

6. Tang, Y. Y. and C. Y. Suen, "Document structures : A
survey", International J. Patt. Recogn. and Artificial
Intelligence (IJPRAI), vol. 8, no. 5, 1994, pp. 1081-1111.

7. Wong, K. Y., R. G. Casey and F.M. Wahl, “Document
analysis system”, IBM J. Res. Development, vol. 26, no. 6,
1982, pp. 647-656.

8. Zlatopolsky, A.A. “Automated document segmentation”,
Patt. Recogn. Lett., vol. 15, no. 7, 1994, pp. 699-704.

	A Two-step Algorithm and its Parallelization for the Generation of Minimum Containing Rectangles for Document Image Segmentation
	Shamik Sural, NIIT Limited, 6B Pretoria Street, Calcutta 700 071, India.
	Abstract
	BEGIN ALGORITHM
	
	END PROCEDURE

