

TUTORIAL SHEET 6: JOURNAL BEARINGS

1. A full journal bearing has a journal diameter of 25 mm, with a unilateral tolerance of -0.03mm . The bushing bore has a diameter of 25.03 mm and a unilateral tolerance of 0.04 mm. The l/d ratio is $1/2$. The load is 1.2 kN and the journal runs at 1100 rev/min. If the average viscosity is 55 mPa·s, find the minimum film thickness, the power loss, and the side flow for the minimum clearance assembly.

$$[0.0045 \text{ mm}, 11.2 \text{ W}, 177 \text{ mm}^3/\text{s}]$$

2. A full journal bearing is 28 mm long. The shaft journal has a diameter of 56 mm with a unilateral tolerance of -0.012 mm . The bushing bore has a diameter of 56.05 mm with a unilateral tolerance of 0.012 mm. The load is 2.4 kN and the journal speed is 900 rev/min. For the minimum clearance assembly find the minimum oil-film thickness, the power loss, and the side flow if the operating temperature is 65°C and SAE 40 lubricating oil is used.

$$[0.011 \text{ mm}, 50 \text{ W}, 995 \text{ mm}^3/\text{s}]$$

3. A full journal bearing has a shaft diameter of 80 mm with a unilateral tolerance of -0.01 mm . The l/d ratio is unity. The bushing has a bore diameter of 80.08 mm with a unilateral tolerance of 0.03 mm. The SAE 40 oil supply is in an axial-groove sump with a steady-state temperature of 60°C . The radial load is 3 kN. Estimate the average film temperature, the minimum film thickness, the heat loss rate, and the lubricant side-flow rate for the minimum clearance assembly, if the journal speed is 8 rev/s.

4. A 64- \times 64-mm sleeve bearing uses grade 20 lubricant. The axial-groove sump has a steady-state temperature of 43°C . The shaft journal has a diameter of 63.5 mm with a unilateral tolerance of -0.025 mm . The bushing bore has a diameter of 63.6 mm with a unilateral tolerance of 0.025 mm. The journal speed is 1120 rev/min and the radial load is 5.34 kN. Estimate

- (a) The magnitude and location of the minimum oil-film thickness
- (b) The eccentricity
- (c) The coefficient of friction
- (d) The power loss rate
- (e) Both the total and side oil-flow rates
- (f) The maximum oil-film pressure and its angular location
- (g) The terminating position of the oil film
- (h) The average temperature of the side flow
- (i) The oil temperature at the terminating position of the oil film

5. A natural-circulation pillow-block bearing has a journal diameter d of 62.5 mm with a unilateral tolerance of -0.025 mm. The bushing bore diameter B is 62.6 mm with a unilateral tolerance of 0.1 mm. The shaft runs at an angular speed of 1120 rev/min; the bearing uses SAE grade 20 oil and carries a steady load of 1350 N in shaft-stirred air at 21°C. The lateral area of the pillow-block housing is 38,700 mm². Perform a design assessment using minimum radial clearance for a load of 2700 N and 1350 N. Use Trumpler's criteria and assume that both l/d and α are unity.

[$\bar{T}_f \approx 93^\circ\text{C}$; all of Trumpler's criteria are fulfilled]