
Chapter 3: Static Failure Theories

1 / 39



What is a static load
A static load is a stationary force or couple applied to a member.

To be stationary, the force or couple must be:

▶ Unchanging in magnitude and direction

▶ Unchanging in its point of application

A static load can produce:

▶ an axial tension or compression,

▶ a shear load,

▶ a bending load,

▶ a torsional load,

▶ any combination of the above
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What is meant by “Failure”?

Failure can mean:

▶ A part has separated into two ore more pieces

▶ Has become permanently distorted – ruining its geometry

▶ Has had its reliability downgraded

▶ Has had its function compromised

▶ Any combination of the above
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Failure due to Static Loading

fundamentally different from

Failure due to Dynamic Loading

We’ll study Failure due to Dynamic Loading
in the next chapter.
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Experimental testing
vs.

“Theoretical” Design
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“Theoretical” Design

Compute stresses ➞ Compare with strength

Strength:

▶ Yield strength

▶ Ultimate strength
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But ... something important

Geometric discontinuities ➞ Stress concentrations

Geometric discontinuity examples (stress raisers):

▶ Shoulders on shafts for bearings

▶ Key slots on shafts for pulleys and gears

▶ Screw threads on bolts

▶ Holes, oil grooves, notches of various kinds
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Stress concentration factor

A theoretical, or geometric, stress-concentration factor relates
the actual maximum stress at a discontinuity to the nominal
stress.

Normal stress: σmax = Ktσ0

Shear stress: τmax = Ktsτ0

Nominal stress σ0 or τ0 calculated from elementary stress
equations.

Kt or Kts depends only on the geometry, not on the material.

Warning: But nature of material does matter
➥ Ductile or Brittle
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Stress concentration: Ductile vs Brittle

In static loading:

Brittle materials (ϵf < 0.05):

Computed stress
use Kt or Kts−−−−−−−−→ Compare with strength

Ductile materials (ϵf ≥ 0.05):

Computed stress
do NOT use Kt or Ks−−−−−−−−−−−−→ Compare with strength

In dynamic loading:

Stress concentration effect is significant for both ductile and brittle
materials.
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Static Failure Theories

General idea: Compare against a failure mechanism in a
simple test.

“Failure theory” ← Accepted practice

Different kinds of failure theories: Need to choose judiciously
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Different failure theories

Ductile materials (yield criteria)

▶ Maximum shear stress

▶ Distortion energy

▶ Ductile Coulomb-Mohr

Brittle materials (fracture criteria)

▶ Maximum normal stress

▶ Brittle Coulomb-Mohr

▶ Modified Mohr
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Failure Theories for Ductile
Materials
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Maximum Shear Stress Theory

This theory predicts:

Yielding begins whenever the maximum shear stress in any
element equals or exceeds the maximum shear stress stress in
a tension-test specimen of the same material when that
specimen begins to yield.

Other names:

▶ Tresca theory

▶ Guest theory
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Maximum Shear Stress Theory ... contd.2

For a general state of stress, order the three principal stresses:

σ1 ≥ σ2 ≥ σ3

Maximum shear stress is then: τmax =
σ1 − σ3

2

For a simple tensile test, we have a uniaxial stress: σ.

Corresponding maximum shear stress stress will be: τmax,ten =
σ

2

At yielding, σ = Sy . So, τmax,ten =
Sy
2
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Maximum Shear Stress Theory ... contd.3

Therefore, the maximum shear stress theory predicts yielding when:

τmax =
σ1 − σ3

2
≥ Sy

2
or, σ1 − σ3 ≥ Sy

Implication: Yield strength in shear is given by: Ssy = 0.5Sy

For design: Incorporate a factor of safety, n:

τmax,ten =
Sy
2n

or, σ1 − σ3 =
Sy
n
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Maximum Shear Stress Theory ... contd.4
Consider a plane stress state, with principal stresses: σA and σB .
The third principal stress is 0.

Case 1: σA ≥ σB ≥ 0.
Yield condition:
σA ≥ Sy

Case 2: σA ≥ 0 ≥ σB .
Yield condition:
σA − σB ≥ Sy

Case 3: 0 ≥ σA ≥ σB .
Yield condition:
σB ≤ −Sy

Other 3 lines for
σB ≥ σA
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Maximum Shear Stress Theory ... contd.5

Point a represents a state of
stress.

If load is increased, it is typical to
assume that the principal stresses
will increase proportionally along
the line from the origin through
point a.
➥ This is the load line.

➥ At point b, yielding occurs.

➥ Factor of safety, n =
Ob

Oa
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Distortion Energy Theory

This theory predicts:

Yielding occurs when the distortion strain energy per unit
volume reaches or exceeds the distortion strain energy per unit
volume for yield in simple tension or compression of the same
material.

Other names:

▶ von Mises or von Mises-Hencky theory

▶ Shear energy theory

▶ Octahedral shear stress theory
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Distortion Energy Theory ... contd.2

Fundamentally:
➥ Yielding is related to shape change
➥ Not to volumetric changes

A state of stress can be decomposed into hydrostatic and
deviatoric components.

➞ Hydrostatic component: volume change
➞ Deviatoric component: shape change (distortion)

In terms of principal stresses:

σ =

σ1 0 0
0 σ2 0
0 0 σ3

 = σavg

1 0 0
0 1 0
0 0 1

+

σ1 − σavg 0 0
0 σ2 − σavg 0
0 0 σ3 − σavg


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Distortion Energy Theory ... contd.3

Strain energy per unit volume: u =
1

2
[ϵ1σ1 + ϵ2σ2 + ϵ3σ3]

Substitute the strain-stress relations:

ϵ1 =
1

E
[σ1 − ν(σ2 + σ3)]

ϵ2 =
1

E
[σ2 − ν(σ3 + σ1)]

ϵ3 =
1

E
[σ3 − ν(σ1 + σ2)]

→ u =
1

2E

[
σ2
1 + σ2

2 + σ2
3 − 2ν (σ1σ2 + σ2σ3 + σ3σ1)

]
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Distortion Energy Theory ... contd.4

For strain energy producing only volumetric change, uv :
➥ Replace σ1, σ2, σ3 by σavg

uv =
3σ2

avg

2E
(1− 2ν)

Substitute σavg =
1

3
(σ1 + σ2 + σ3) and simplify:

→ uv =
1− 2ν

6E
(σ2

1 + σ2
2 + σ2

3 + 2σ1σ2 + 2σ2σ3 + 2σ3σ1)
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Distortion Energy Theory ... contd.5

Distortion energy = Strain Energy − Strain Energy due to Volumetric Change

ud = u − uv =
1 + ν

3E

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2

2

]

For simple tensile test at yield: σ1 = Sy and σ2 = σ3 = 0.

ud ,ten =
1 + ν

3E
S2
y
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Distortion Energy Theory ... contd.6

Therefore, by Distortion Energy Theory, yielding is predicted when:

ud ≥ ud ,ten

⇒
[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2

2

]1/2
≥ Sy

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2

2

]1/2
→ σ′

σ′ : Single, equivalent, or effective stress

This effective stress is usually called the von Mises stress.

For design, incorporate a factor of safety: σ′ =
Sy
n
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Distortion Energy Theory ... contd.7
For a plane stress state with principal stresses: σA, σB , and 0,

➥ von Mises stress, σ′ =
(
σ2
A − σAσB + σ2

B

)1/2

Distortion Energy (DE) Theory is less conservative than Maximum
Shear Stress (MSS) Theory
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Distortion Energy Theory ... contd.8
Relation to Octahedral Shear Stress: (Refer Q7 and Q8 in TS4 of

Mechanics of Solids)

In a coordinate system with axes oriented along principal stress
directions, planes that are equally inclined to the axes are
octahedral planes. ➞ 8 such planes

➥ Normal stress on each plane: Octahedral normal stress (σoct)
➥ Shear stress on each plane: Octahedral shear stress (τoct)

σoct = σavg

τoct =
1

3

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]1/2

For a simple tensile test: σ1 = Sy and σ2 = σ3 = 0. Thus:

τoct,ten =

√
2

3
Sy
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Distortion Energy Theory ... contd.9

The yielding criterion can be set as: τoct ≥ τoct,ten.

⇒
[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2

2

]1/2
≥ Sy

This is the same criterion derived earlier.

That is why: Another name of the Distortion Energy Theory is the
Octahedral Shear Stress Theory.
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Distortion Energy Theory ... contd.10
Using xyz components of 3D stress, the von Mises stress can be
written as:

σ′ =
1√
2

[
(σx − σy )

2 + (σy − σz)
2 + (σz − σx)

2 + 6(τ 2xy + τ 2yz + τ 2zx)
]1/2

For plane stress: σ′ = (σ2
x − σxσy + σ2

y + 3τ 2xy )
1/2

For a case of pure shear τxy under plane stress with σx = σy = 0:

Distortion energy criterion: (3τxy )
1/2 ≥ Sy .

Thus, the shear yield strength predicted by this theory is:

Ssy =
Sy√
3
= 0.577Sy .

Note: This Ssy is about 15% greater than the Ssy predicted by the
Maximum Shear Stress Theory.
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Mohr Theory
▶ Some materials have compressive strengths different from

tensile strengths
▶ Mohr theory is based on three simple tests: tension,

compression, and shear
▶ Plotting Mohr’s circle for each, bounding curve defines failure

envelope
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Coulomb-Mohr Theory
▶ Curved failure curve is difficult to determine analytically

▶ Coulomb-Mohr theory simplifies to linear failure envelope
using only tension and compression tests (dashed circles)
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Coulomb-Mohr Theory ... contd.2
Triangles OBiCi are similar.
(i = 1, 2, 3)
B1C1

OC1
=

B2C2

OC2
=

B3C3

OC3

⇒ B2C2 − B1C1

OC2 − OC1
=

B3C3 − B1C1

OC3 − OC1

⇒ B2C2 − B1C1

C1C2
=

B3C3 − B1C1

C1C3

Here, B1C1 = St/2, B2C2 = (σ1 − σ3)/2, B3C3 = Sc/2 are the three
circle radii. The distance from origin to C1 is St/2, to C3 is Sc/2, and to
C2 is (σ1 + σ3)/2. Thus, we have:

σ1 − σ3

2
− St

2
St
2
− σ1 + σ3

2

=

Sc
2
− St

2
St
2

+
Sc
2

=⇒ σ1

St
− σ3

Sc
= 1
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Coulomb-Mohr Theory ... contd.3

Consider plane stress case with principal stresses: σA, σB , and 0.

Case 1: σA ≥ σB ≥ 0

⇒ σA = St

Case 2: σA ≥ 0 ≥ σB

⇒ σA
St
− σB

Sc
= 1

Case 3: 0 ≥ σA ≥ σB

⇒ σB = −Sc
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Coulomb-Mohr Theory ... contd.4

For design, incorporate the factor of safety n by dividing all
strengths by it. Thus, we have:

σ1
St
− σ3

Sc
=

1

n
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Coulomb-Mohr Theory ... contd.5

For the case of pure shear, we have τ = σ1 = −σ3.

Also, τmax = Ssy .

Substitute σ1 = −σ3 = Ssy in the Coulomb-Mohr criterion:

Ssy
St
− −Ssy

Sc
= 1

=⇒ Ssy =
StSc

St + Sc
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MSS and DE Theories Comparison

Maximum Shear Stress (MSS) Theory is more conservative than
Distortion Energy (DE) Theory.
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Failure Theories for Brittle
Materials
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Maximum Normal Stress Theory

This theory states: That failure occurs whenever one of the three
principal stresses equal or exceeds the strength. For principal
stresses σ1 ≥ σ2 ≥ σ3, failure occurs whenever

σ1 ≥ Sut or σ3 ≤ −Suc

Here, Sut and Suc are the ultimate tnesile and compressive
strengths.

For a plane stress case with non-zero principal stresses σA ≥ σB :

σA ≥ Sut or σB ≤ −Suc

For design with a factor of safety n: σA =
Sut
n

or σB = −Suc
n

Warning: This theory is not recommended for use.
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Brittle Coulomb-Mohr Theory
This theory is exactly like the Ductile Coulomb-Mohr Theory
discussed earlier, except that the yield strengths are replaced by
ultimate strengths.

For a plane stress case with non-zero principal stresses σA and σB
and incorporating a factor of safety, n for design:

Case 1: σA ≥ σB ≥ 0

⇒ σA =
Sut
n

Case 2: σA ≥ 0 ≥ σB

⇒ σA
Sut
− σB

Suc
=

1

n

Case 3: 0 ≥ σA ≥ σB

⇒ σB = −Suc
n
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Modified Mohr Theory

Case 1: σA ≥ σB ≥ 0

⇒ σA =
Sut
n

Case 2: σA ≥ 0 ≥ σB and

∣∣∣∣σBσA
∣∣∣∣ ≤ 1

⇒ σA =
Sut
n

Case 3: σA ≥ 0 ≥ σB and

∣∣∣∣σBσA
∣∣∣∣ > 1

(Suc − Sut)σA
SucSut

− σB
Suc

=
1

n

Case 4: 0 ≥ σA ≥ σB

σB = −Suc
n

For Case 3, start with:

σA
k
− σB

Suc/n
= 1

To find k , note that when

σA =
Sut
n

, we have

σB = −Sut
n

(Refer the figure in the next
slide.)

38 / 39



Depiction of Brittle Coulomb-Mohr and Modified Mohr
Theories

Fracture data of gray cast iron
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