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1 Variational formulation
Consider a shaft with a cross-section of arbitrary shape as shown in Fig. 1. The rate of twist along the length is given

by � =
�
dz

, where � is the angular displacement of a material point on a cross-section. Then, taking the shaft to be
�xed to a wall at z = 0, we have � = 0 at z = 0 so that � = �z.

Figure 1: Cross-section with arbitrary shape

For a cross-section with arbitrary shape, the assumption that plane sections remain plane is no longer true (unlike a
circular cross-section). We use the following kinematical hypothesis:

u = −(r�) sin � = −y� = −�yz, (1a)
v = (r�) cos � = x� = �xz, (1b)
w = �(x, y), (1c)

where �(x, y) denotes that the plane sections do not remain plane under torsion. For a circular cross-section, � = 0.

Then the strains are given by:
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"xx =
)u
)x

= 0, (2a)

"yy =
)v
)y

= 0, (2b)

"zz =
)w
)z

= 0, (2c)

"xy =
1
2 (

)u
)y

+
)v
)x)

=
1
2
(−�z + �z) = 0, (2d)

"yz =
1
2 (

)v
)z

+
)w
)y ) =

1
2 (�x +

)�
)y)

(2e)

"zx =
1
2 (

)u
)x

+
)w
)x ) =

1
2 (−�y +

)�
)x)

(2f)

Now, consider the virtual work equation: ∫
V
�ij�"ij dV = ∫

A
ti�ui dA.

Proceeding �rst with the lhs of the virtual work equation:

LHS = ∫
V
(2�xz�"xz + 2�yz�"yz) dV

= ∫
V
4G ("xz�"xz + "yz�"yz) dV

= ∫
V
4G [

1
2 (−�y +

)�
)x)

1
2 (−y�� +

)��
)x ) +

1
2 (�x +

)�
)y)

1
2 (x�� +

)��
)y )] dV

= GL ∫
A

{

(−�y +
)�
)x)

(−y) +(�x +
)�
)y

x)

}
�� dA + GL ∫

A

{

(−�y +
)�
)x)

)��
)x

+(�x +
)�
)y)

)��
)y

}
dA

= GL ∫
A

{

(−�y +
)�
)x)

(−y) +(�x +
)�
)y

x)

}
�� dA

+ GL ∫
A [

)
)x

{

(−�y +
)�
)x)

��
}
−

)
)x (−�y +

)�
)x)

��

+
)
)y

{

(�x +
)�
)y)

�
}
−

)
)y (�x +

)�
)y)

��] dA

Next, proceeding with the rhs of the virtual work equation, we note that in ti�ui dA the shearing force due to traction

on the surface of the beam can be written in terms of the externally applied torque as
T
R

while the displacement can
be written as R� so that the rhs becomes:

RHS = T�� |L − T�� |0,

= [T��]L0

= ∫
L

0
T�

d�
dz

dz

= ∫
L

0
T��dz

= TL��
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Setting LHS = RHS, we have

GL ∫
A

{

(−�y +
)�
)x)

(−y) +(�x +
)�
)y)

x
}
�� dA

− GL ∫
A [

)
)x (−�y +

)�
)x)

�� +
)
)y (�x +

)�
)y)

��] dA

+ GL∮ [(−�y +
)�
)x)

�� nx +(�x +
)�
)y)

�� ny] ds = TL��

Therefore, we must have the following:

TL = GL ∫
A

{

(−�y +
)�
)x)

(−y) +(�x +
)�
)y)

x
}
�� dA, ⟹ T = G ∫

{
−y

)�
)x

+ x
)�
)y

+ � (x2 + y2)

}
dA (3)

GL
)
)x (−�y +

)�
)x)

+
)
)y (�x +

)�
)y)

= 0 ⟹
)2�
)x2

+
)2�
)y2

= 0, (4)

and

(−�y +
)�
)x)

nx +(�x +
)�
)y)

ny = 0 on the boundary. (5)

Since for � = 0, we have w = 0 (basically no twisting case), it may be supposed that w is proportional to � as long
as � is small. Thus, we let � = �' so that w = �'. Here, ' is referred to as the warping function.

Therefore, from (3), we have

T = G ∫

{
−y�

)'
)x

+ x�
)'
)y

+ � (x2 + y2)

}
dA

= G� ∫

{
x
)'
)y

− y
)'
)x

+ (x2 + y2)

}
dA

= G�J ,

where

J =
{
x
)'
)y

− y
)'
)x

+ (x2 + y2)

}
dA.

The term GJ is referred to as the torsional rigidity.

From (4), we have

)2'
)x2

+
)2'
)y2

= 0. (6)

And, from (5), we have

(−y +
)'
)x)

nx +(x +
)'
)y)

ny = 0 on the boundary. (7)
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Let us consider the simplest solution to the Laplace equation (6) as ' = c, a constant. Then from (7), we have

(−y)
dy
ds

− (x)
dx
ds

= 0,

or,
1
2
d
ds (

x2 + y2) = 0,

or, x2 + y2 = constant

So the boundary is a circle. Then we have

J = ∫ [x
)'
)y

− y
)'
)x

+ (x2 + y2)] dA

= ∫ (x2 + y2) dA

which is the familiar polar moment of inertia encountered in �rst year mechanics.

Thus, we have

T = G�J ⟹ � =
T
GJ

Note that with � a constant, and considering no twisting at one end for a shaft of length L, we have � = �L from
� = d�

dz at the other end. Then, from the expression of � , we have

� =
TL
GJ

,

which again is the familiar formula from �rst year mechanics for the twisting angle obtained for a shaft of circular
cross-section.

2 Alternative formulation using Prandtl stress function
It is de�nitely good that this sophisticated theory is able to recover the formulae for the simplest case. However, there
is a shortcoming. Note that warping function, ' had to be guessed to �nd something appropriate for a particular
geometry. Basically, we considered it be a constant, and it turned out to be the solution corresponding to a circle. As
further examples, we have ' = Axy for a shaft of elliptical cross-section and ' = A(y3 − 3x2y) for a shaft having a
cross-section in the form of an equilateral triangle.

It would, however, be much better if we could proceed to deduce the solution in response to a given geometry. That
necessitates reformulating the theory in terms of what is known as the Prandtl stress function.

Must like the Airy stress function formulation used in plane stress and plane strain problems, in the Prandtl stress
function formulation for torsion problems, we start by assuming the following forms

�xz = 2G�
) 
)y

and �yz = −2G�
) 
)x

. (8)

The motivation of assuming these forms is to identically satisfy

)�xz
)x

+
)�yz
)y

= 0. (Note that �zz is zero.)
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Now, compare the expressions of �xz and �yz from (8) with those obtained earlier using Hooke’s law to obtain

−2
) 
)x

= x +
)'
)y

, (9a)

2
) 
)y

= −y +
)'
)x

. (9b)

Eliminate ' by taking the derivative of (9a) with respect to x , taking the derivative of (9b) with respect to y , and
then subtracting, to obtain:

∇2 = −1.

We now use the no traction boundary condition on the outer surface to obtain

�xznx + �yzny = 0

or, 2G�
) 
)y

dy
ds

− 2G�
) 
)x (−

dx
ds )

= 0

or,
) 
)y

dy +
) 
)x

dx = 0

or, d = 0
or,  = constant on the periphery

Since only derivatives of  appear in the de�nitions of �xz and �yz , any constant may be added to  .

Now, the torsional rigidity is

GJ = G ∫
A

{
x
)'
)y

− y
)'
)x

+ (x2 + y2)

}
dA

= G ∫
A

{
x (−2

) 
)x

− x) − y (2
) 
)y

+ y) + (x2 + y2)

}
dA

= −2G ∫
A(x

) 
)x

+ y
) 
)y ) dA

= −2G ∫
A

{
)
)x

(x ) +
)
)y

(y ) − 2 
}

dA

= −2G ∮ (x nx + y ny ) ds + 4G ∫
A
 dA

= −2G ∮ (xnx + yny ) ds + 4G ∫
A
 dA (10)

2.1 Simply-connected domain
For a cross-section that is simply-connected, there is only one contour (i.e. the periphery of the cross-section) and
over it we take  = 0. This condition  = 0 becomes the boundary condition for ∇2 = −1.

With  = 0 along the contour, the torsional rigidity for a simply connected-region becomes (see (10))

GJ = 4G ∫
A
 dA. (11)

For a circle, if  has to be zero on the periphery, it can be taken as  = K
{
R2 − (x2 + y2)

}
, where K is as yet-

unknown. We note that the torsional rigidity becomes
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GJ = 4G ∫
A
 dA

= 4GK ∫
A

{
R2 − (x2 + y2)

}
dxdy

≡ 4GK ∫
R

0
(R2 − r2)2�r dr

= 2KG�R4.

So we end up with J = 2K�R4. But we know that J =
1
2
�R4 for a circular cross-section. Therefore, K =

1
4

, so that

 =
1
4
{
R2 − (x2 + y2)

}
.

With  =
1
4
{
R2 − (x2 + y2)

}
, check for '. We have:

)'
)y

= −x − 2
) 
)x

= 0,

)'
)x

= y + 2
) 
)y

= 0.

Therefore,

d' =
)'
)x

dx +
)'
)y

dy = 0,

or ' = constant,

which is exactly what we had obtained earlier for a circle.

2.2 Multiply-connected domain
We had shown earlier (see (10)) that the torsional rigidity is

GJ = −2G ∮ (xnx + yny ) ds + 4G ∫
A
 dA.

For a simply-connected domain,  was taken as zero on the periphery. So the torsional rigidity, GJ was 4G ∫A  dA.

However, for a multiply-connected domain,  is a di�erent constant on di�erent contours. So we can take  as zero
on only one of them.

We use

x = −2
) 
)x

−
)'
)y

⟹ xnx = −2
) 
)x

nx −
)'
)y

nx ,

y = −2
) 
)y

+
)'
)x

⟹ yny = −2
) 
)y

ny +
)'
)x

ny .
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Therefore,

− 2G ∮ (xnx + yny ) ds

= −2G ∮ (−2
) 
)x

nx −
)'
)y

nx − 2
) 
)y

ny +
)'
)x

ny) ds

= 4G ∮ (
) 
)x

nx +
) 
)y

ny) ds + 2G ∮ (
)'
)y

nx −
)'
)x

ny) ds

= 4G ∮
) 
)n

 ds + 2G ∮ d' ds

= 4G∑
Ci
 ∮

Ci

) 
)n

ds + 2G∑
Ci
 ∮

Ci
d' ds ( is a constant over any contour)

Since the warping function, ' is single-valued, we must have that

∮ d' = 0

or, ∮ (
)'
)x

dx +
)'
)y

dy) = 0

or, ∮

{

(2
) 
)y

+ y) dx −(2
) 
)x

+ x) dy
}
= 0

or, − 2∮ (
) 
)x

dy −
) 
)y

dx) − ∮ (xdy − ydx) = 0

or, − 2∮
) 
)n

ds − ∮ r ⋅ n ds = 0

or, − 2∮
) 
)n

ds − ∫ ∇ ⋅ r dA = 0

or, 2∮
) 
)n

ds = − ∫ ∇ ⋅ r dA

or, 2∮
) 
)n

ds = −2A

or, ∮
) 
)n

ds = −A

Therefore, the torsional rigidity is

GJ = −2G ∮ (xnx + yny ) ds + 4G ∫
A
 dA

= 4G ∮
) 
)n

ds + 4G ∫
A
 dA.
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