LECTURE - 40, 29th Octobes

Properties of z-transform

Suppose that $x_1[n] \longleftrightarrow X_1(z)$ with ROC R_1 and $x_2[n] \longleftrightarrow X_2(z)$ with ROC

• Linearity: $a_1x_1[n] + a_2x_2[n] \longleftrightarrow a_1X_1(z) + a_2X_2(z)$ with ROC containing $R_1 \cap R_2$

• Time-shifting: $x_1[n-n_0] \longleftrightarrow z^{-n_0}X_1(z)$ with ROC R_1 except possible addition or removal of 0 or ∞

Suppose
$$x_1(2) = const.$$

$$y_1(2) = const.$$

$$y_2(2) = const.$$

$$z^{-n_0} \cdot const. = z^{-n_0} \times 1(z)$$

$$z^{-n_0} \times 1(z)$$

• Frequency Scaling: $(z_0^n x_1[n] \longleftrightarrow X_1\left(\frac{z}{z_0}\right)$ with ROC $|z_0|R_1$.

$$\sum_{n=-\infty}^{\infty} z_n^n \gamma_1[n] z^{-n} = \sum_{n=-\infty}^{\infty} \gamma_1[n] \left(\frac{z}{z_0}\right)^{-n} = \chi_1\left(\frac{z}{z_0}\right)$$

Let
$$\operatorname{Roc} f = \operatorname{Zo}^n \operatorname{A[n]} \text{ be } \overline{\mathbb{R}}$$
. Then, $\overline{Z} \in \overline{\mathbb{R}} \Rightarrow \operatorname{X}_1(\overline{Z})$ is finite.

Time-reversal: $x_1[-n] \longleftrightarrow X_1(\frac{1}{z})$ with $\operatorname{ROC}(\frac{1}{R_1})$ $\overline{Z} \in R_1 \Rightarrow \overline{Z} \in R_1 \geq 0$
 $\operatorname{Zo} \operatorname{A[-n]} \overline{Z}^n = \operatorname{Zo} \operatorname{A[m]} \overline{Z}^m$
 $\operatorname{A[-n]} \overline{Z}^n = \operatorname{Zo} \operatorname{A[m]} (\frac{1}{Z})^m = \operatorname{X_1}(\overline{Z})$
 $\operatorname{Zo} \operatorname{A[m]} (\frac{1}{Z})^m = \operatorname{X_1}(\overline{Z})$

Conjugation:
$$x_1^*[n] \longleftrightarrow X_1^*(z^*)$$
 with ROC R_1

Fonjugation: $x_1^*[n] \longleftrightarrow X_1^*(z^*)$ with ROC R_1 enive $X_1(z) = \sum_{n=-\infty}^{\infty} x_n[n]z$

put happens

$$\eta = -\infty$$

Then

 $\chi_1(z) = \chi_1(z) = \chi_2(z)$

Then

 $\chi_1(z) = \chi_1(z)$

Then

 $\chi_1(z$

od, imaginary & their combinations.

Properties of z-transform

Suppose that $x_1[n] \longleftrightarrow X_1(z)$ with ROC R_1 and $x_2[n] \longleftrightarrow X_2(z)$ with ROC

• Convolution: $x_1[n] * x_2[n] \longleftrightarrow X_1(z)X_2(z)$ with ROC containing $R_1 \cap R_2$.

$$24[n] + 32[n] = \frac{8}{2} 24[n] 32[n-n].$$

$$\sum_{k=-\infty}^{\infty} \left[\sum_{n=-\infty}^{\infty} 32[n] \sum_{k=-\infty}^{\infty} 32[n-k] \sum_{k=-\infty}^{\infty} 32$$

ullet Example: For the DT integrator system, $Y(z)=rac{1}{1-z^{-1}}X(z)$ 2[1] $f[n] = \frac{1}{2} \alpha[n]$ impulse response h[n] = u[n]

impulse response
$$h[n] = u[n]$$

 $H(2) = \frac{1}{1-2^{-1}}$

• Differentiation in z-domain: $nx_1[n] \longleftrightarrow -z\frac{d}{dz}X_1(z)$ with ROC R_1 .

$$X_{1}(z) = \sum_{n=-\infty}^{\infty} \chi(n) z^{-n}, \quad \frac{d}{dz} \chi_{1}(z) = \sum_{n=-\infty}^{\infty} \chi(n) (-n) z^{-n-1}$$

• Example: If $X(z) = \log(1 + az^{-1})$ with |z| > |a|, then determine x[n].

$$\frac{d}{dz}X(z) = \frac{1}{1+az^{-1}} \cdot \frac{d}{dz} \left(1 + \frac{q}{z}\right)$$

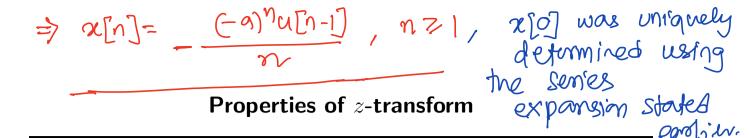
$$= \frac{1}{1+az^{-1}} \cdot \frac{-q}{z^2}$$

$$\Rightarrow -z \frac{d}{dz} X_1(z) \leftarrow y \gamma_1(z)$$

$$\Rightarrow -2\frac{d}{dz}X(z) = \frac{a}{z(1+az^{-1})} = \frac{az^{-1}}{1+az^{-1}}$$

$$\frac{1}{1+a2!} \leftrightarrow (-a)^n u[n],$$

$$\frac{1}{1+a2!} \leftrightarrow (-a)^n u[n], \qquad \frac{az^{-1}}{1+a2!} \leftrightarrow \underbrace{(-a)^n u[n-1]}_{=n}$$



• Initial value theorem: For a causal signal, x[n] = 0 for n < 0, we have $x[0] = \lim_{z \to \infty} X(z)$

$$= x[0] + \frac{5}{x[1]} + \frac{55}{x[2]} + \frac{55}{$$

- For this class of signals, the number of finite zeros cannot be greater than the number of finite poles.
- ullet For this class of signals, degree of numerator of X(z) is at most the degree of denominator of x(z).

$$X(z) = \frac{(z-1)(z-2)}{(z-3)}$$
The underlying
$$x(1) \text{ cannot be}$$

$$cansa).$$

z-transform properties

 TABLE 10.1
 PROPERTIES OF THE z-TRANSFORM

Section	Property	Signal	z-Transform	ROC	
		x[n]	X(z)	R	
		$x_1[n]$	$X_1(z)$	R_1	
		$x_2[n]$	$X_2(z)$	R_2	
10.5.1	Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	At least the intersection of R_1 and R_2	
10.5.2	Time shifting	$x[n-n_0]$	$z^{-n_0}X(z)$	R, except for the possible addition or deletion of the origin	
10.5.3	Scaling in the z-domain	$e^{j\omega_0 n}x[n]$	$X(e^{-j\omega_0}z)$	R	
		$z_0^n x[n]$	$X\left(\frac{z}{z_0}\right)$	z_0R	
		$a^n x[n]$	$X(a^{-1}z)$	Scaled version of R (i.e., $ a R$ = the set of points { $ a z$ } for z in R)	
10.5.4	Time reversal	x[-n]	$X(z^{-1})$	Inverted R (i.e., R^{-1} = the set of points z^{-1} , where z is in R)	
10.5.5	Time expansion	$x_{(k)}[n] = \begin{cases} x[r], & n = rk \\ 0, & n \neq rk \end{cases}$ for some integer r	$X(z^k)$	$R^{1/k}$ (i.e., the set of points $z^{1/k}$, where z is in R)	
10.5.6	Conjugation (HW)	$x^*[n]$	$X^*(z^*)$	R	
10.5.7	Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least the intersection of R_1 and R_2	
10.5.7	First difference	x[n] - x[n-1]	$(1-z^{-1})X(z)$	At least the intersection of R and $ z > 0$	
10.5.7	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	At least the intersection of R and $ z > 1$	
10.5.8	Differentiation in the z-domain	nx[n]	$-z\frac{dX(z)}{dz}$	R	
10.5.9	Initial Value Theorem If $x[n] = 0$ for $n < 0$, then $x[0] = \lim_{z \to \infty} X(z)$				

z-transform pairs

 TABLE 10.2
 SOME COMMON z-TRANSFORM PAIRS

	Signal	Transform	ROC
	1. δ[n]	1	All z
	2. u[n]	$\frac{1}{1-z^{-1}}$	z > 1
	3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
	4. $\delta[n-m]$	$\frac{z^{-m}}{1} = \frac{d_{1} \left(\frac{1}{2} - \alpha z^{\frac{1}{2}} \right)}{2}$	All z, except 0 (if $m > 0$) or ∞ (if $m < 0$)
	5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
	6. $-\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
	7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2} \overset{\checkmark}{\smile}$	$ z > \alpha $
	$8n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
	9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2\cos \omega_0] z^{-1} + z^{-2}}$	z > 1
	10. $[\sin \omega_0 n]u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
	11. $[r^n \cos \omega_0 n]u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
$\sqrt{}$	12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r
zn I [eĵwan	$-j\omega_{on}$] $u(n)$	1 (rejuo) n + 1[1	(e ^{-jw})n)u[

Evaluation of DTFT from Pole-Zero Plots

- From the pole-zero plot of the z-transform, we can graphically evaluate the DTFT when the unit circle contained in the ROC.
- Let $h[n] = a^n u[n]$ with |a| < 1.

$$H(e^{jn}) = \frac{1}{1 - q = jn}$$

$$AH(e^{j\Omega}) = Ae^{j\Omega}$$

$$-(A(e^{j\Omega}-\alpha))$$
• What happens when there

More generally:

$$(z-q_1)(z-a_2)-(z-q_1)$$

 $(z-b_1)-(z-b_m)$

$$[H(\hat{e}^{j}n)] = \frac{\prod_{i=1}^{K} [\hat{e}^{j}n - a_i]}{\prod_{i=1}^{K} [\hat{e}^{j}n - a_i]}$$

 $|e^{y}-y| = |e^{y}-y| = |e^{$

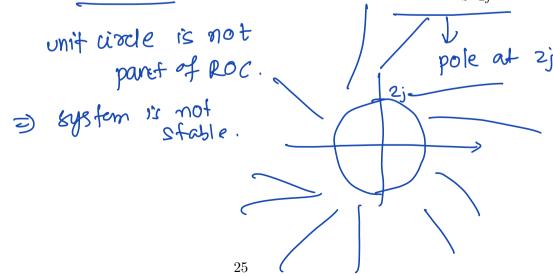
System Properties through ROC

- Causality: an LTI system is causal when its impulse response h[n] = 0 for n < 0. In other words, h[n] is a causal signal.
- ullet Thus, the z-transform of h[n], denoted H(z) has ROC as the exterior of a circle including ∞ .
- The radius of this circle is larger than the maximum value of the magnitude of its poles.
- Since the ROC includes ∞ , the order of the numerator is less than or equal to the order of the denominator.

- Stability: an LTI system is BIBO stable iff $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$.
- In other words, the ROC of the z-transform of h[n] includes the unit circle.

A causal system with rational ${\cal H}(z)$ is stable if and only if all the poles are inside the unit circle.

• Example: Is a causal system with the transfer function $H(z) = \frac{1}{z-2j}$ stable?



Examples

Consider the following z-transforms of impulse responses of several LTI systems. Determine if these systems are stable, causal, both or neither for different possible ROCs.

H₁(z) =
$$\frac{z^3 - 2z^2 + z}{z^2 + 0.25z + 1/8}$$
 \Rightarrow System is not causal $H_2(z) = \frac{1}{1 - 0.5z^{-1}} + \frac{1}{1 - 2z^{-1}}$ $H_3(z) = \frac{1}{1 - 2r\cos(\theta)z^{-1} + r^2z^{-2}}$

H₁(2): poles:
$$-1\pm\sqrt{7}$$
, $|-1\pm\sqrt{7}$; $|$

$$H_{2}(z)$$
: poles: 0.5,2
 $ROC_{1} = \{2 \mid |z| > 2\}$ — unstable, causal
 $ROC_{2} = \{2 \mid |z| \in (0.5,2)\} \rightarrow stable$,
 $ROC_{3} = \{2 \mid |z| < 0.5\} \rightarrow neither stable$,
 $nor causal$.

 $H_3(-2)$: poles: $Re^{\frac{1}{2}\theta}$, $Re^{\frac{1}{2}\theta}$ $Roc_1 = \{2 | |2| \neq R\}$, $Roc_2 = \{2 | |2| < R\}$ For R<1, ROC, > Causal, but not stable, ROC: Stable, but not real, ROC: not really al.

LTI Systems - Linear Constant Coefficient Difference Equations

• Consider the following general form of linear difference equation:

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

where x[n] is the input and y[n] is the output.

applying z-transform on both sides, we obtain

$$\frac{N}{2} a_{K} z^{-K} \gamma(z) = \sum_{k=0}^{M} b_{k} z^{-k} \chi(z)$$

$$\Rightarrow H(z) = \frac{\gamma(z)}{\chi(z)}$$

• Then, we have

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}.$$

The ROC is determined from whether the system is stable, causal, etic.

Examples

• Consider a LTI system whose input and output satisfy

$$y[n] - 0.5y[n-1] = x[n] + \frac{1}{3}x[n-1].$$

Determine its impulse response for different possible ROCs.

$$\frac{Y(2) \left[1-0.5 z^{-1}\right] = X(2) \left[1+\frac{1}{3}z^{-1}\right]}{Y(2)} = \frac{1+\frac{1}{3}z^{-1}}{1-\frac{1}{2}z^{-1}} \cdot \text{pole: } \frac{1}{2} \cdot \frac{1}{1-\frac{1}{2}z^{-1}} \cdot \text{pole: } \frac{1}{2} \cdot \frac{1}{1-\frac{1}{2}z^{-1}} \cdot \frac{1}{1-\frac{$$

Example 10.26

Defermine H(z), value of a and whether the system is causal and stable.

Solution:
$$X_{1}(z) = \frac{1}{1 - \frac{1}{6}z^{-1}}$$
, $ROC = \frac{1}{2}|z|^{2} = \frac{1}{6}$
 $Y_{1}(z) = a \cdot \frac{1}{1 - \frac{1}{2}z^{-1}} + 10 \cdot \frac{1}{1 - \frac{1}{3}z^{-1}}$, $ROC: |z| > \frac{1}{2}$
 $H(z) = \frac{Y_{1}(z)}{X_{1}(z)} = \frac{1 - \frac{1}{6}z^{-1}}{X_{1}(z)} \cdot \frac{a}{1 - \frac{1}{2}z^{-1}} + \frac{10}{1 - \frac{1}{3}z^{-1}}$, $ROC: |z| > \frac{1}{2}$.

From 21, 42, we have $H(-1) = \frac{7}{4}$

$$= (1 + \frac{1}{6}) \left[\frac{9}{1 + \frac{1}{2}} + \frac{10}{1 + \frac{1}{3}} \right]$$

$$\frac{7}{4} = \frac{4}{6} \cdot \left[\frac{29}{3} + \frac{30}{4} \right]$$

$$\frac{7}{2} - \frac{30}{4} = \frac{29}{3} = \frac{-72}{8}$$

$$\frac{3}{2} \left[\frac{6 - 30}{4} \right] = \frac{-72}{8}$$

$$= \frac{-9}{2}$$

Example 10.27

A discrete-time system is causal and stable. HCz) has a pole at 1/2 and zero on the unit circle. Determine if the following other poles & zeros may exist. Statements are true, following inconclusive.

(a) DIFT of 2 h[n] exists. Yes-

(b) H(e)w) =0 for some w. Yes

(c) h[n] has finite duration. False

(d) h[n] is real - inconclusive.

(e) g[n] = n[h[n] * h[n]) is impulse response of a stable system.

solution:

- a) DIFT($2^nh[n]$) = H(2), for |2|=2System is causal & stable.
- C) If h[n] has finite Juration, Roc is entire complex plane except 0 & \$\infty\$.

 But we have a pole at \$\frac{1}{2}\$, which must not be part of Roc.
- d) For h[n] to be real, H(2)=(H(2))*
- (e) $h[n] \oplus h[n] \longleftrightarrow (H(2))^2$ $n(h[n] \oplus h[n]) \longleftrightarrow -2 \frac{d}{d2} (H(2))^2 = -22 H(2) \frac{d}{d2} H(2)$

Roc well extend outwards from within unit circle.

poles of G(Z)

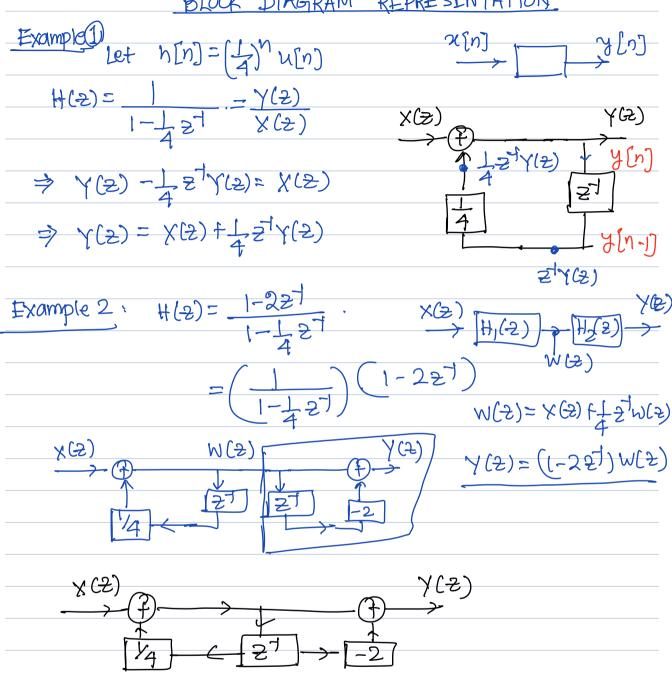
C poles of H(Z)

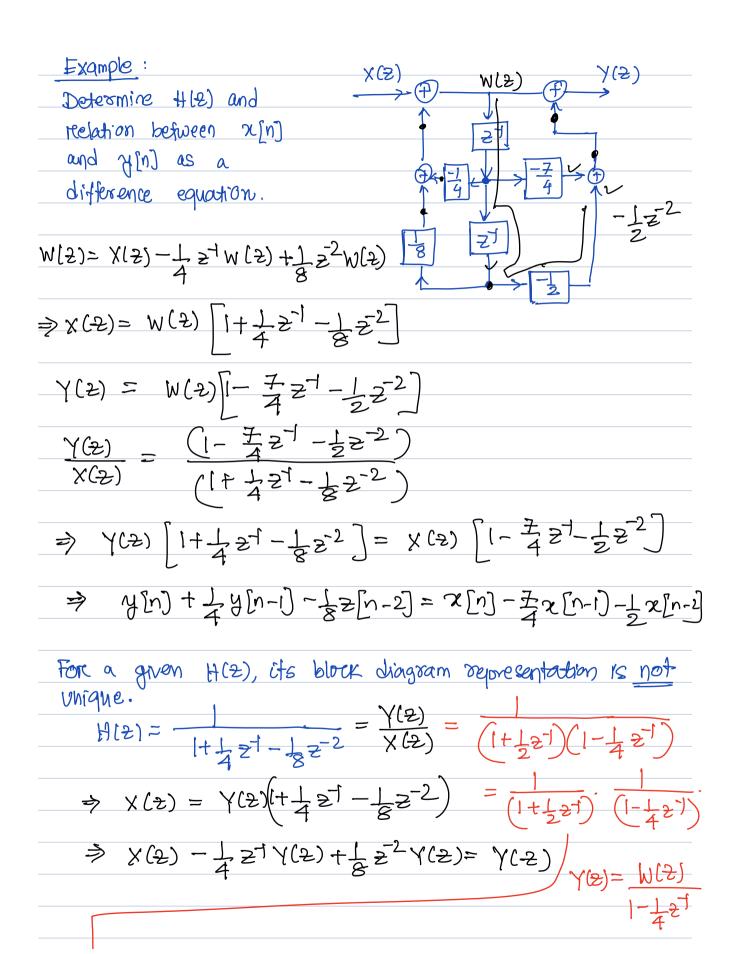
with he has orders.

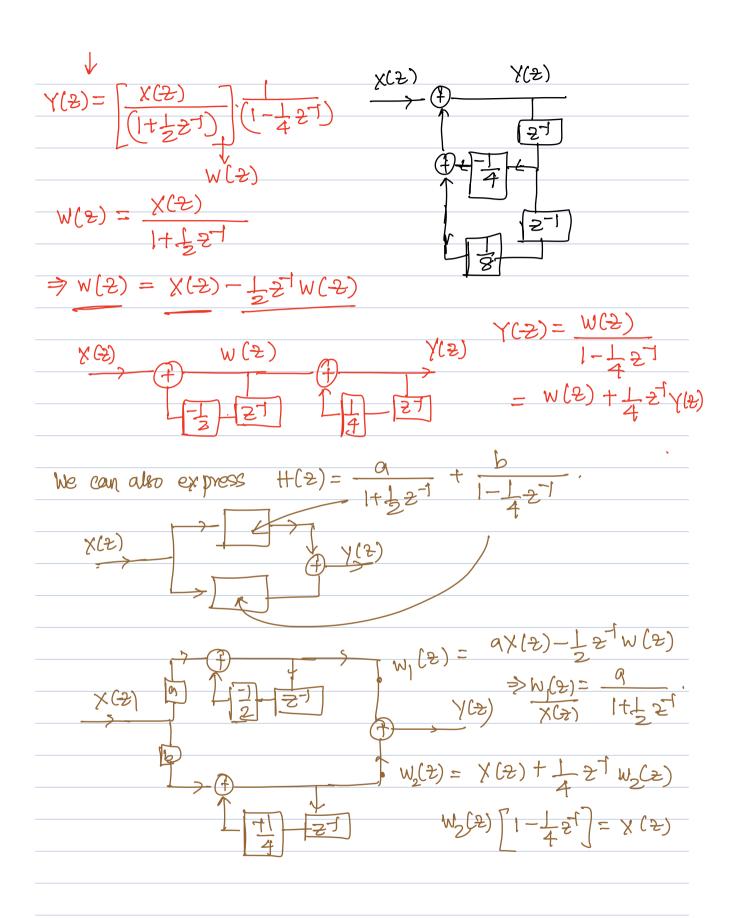
LECTURE 42&43: 31St October

(a) Let $x_1[n] = (\frac{1}{7})_n n[n], x_2[n] = (\frac{1}{3})_n n[n] \longleftrightarrow \frac{1-\frac{1}{7}}{1-\frac{1}{7}} (\frac{1}{5})^{\frac{3}{2}}$ 4[n]= 24[n+3] (n2[-n+1]. Determine Y(Z). solution: $x_1(2) = \frac{1}{1-\frac{1}{2}}$, Roc: $|2| > \frac{1}{2}$ $24[n+3] \leftrightarrow \frac{2^3}{1-\frac{1}{2}2^{-1}}$, ROC: $\{2|12[>\frac{1}{2},2\neq\infty]$ $\mathcal{A}_{2}[n+i] \longleftrightarrow \frac{2}{1-\frac{1}{2}+1}, \{|z| > \frac{1}{3}, 2 \neq \infty\}$ $32[-n+1] \leftrightarrow \frac{z^{-1}}{1-1}$, Roc: $\{z \mid |z| < 3, z \neq 0\}$ Q2) Let $x[n] \leftrightarrow x(z)$, and $x[n] := \begin{cases} x[\frac{n}{2}] \end{cases}$, when n is even. Determine x(z) in terms of x(z). $\chi_{j}(z) = \sum_{n=-\infty}^{\infty} \chi_{j}[n] z^{-n} = \sum_{n=-\infty}^{\infty} \chi_{j}[n] z^{-n} = \sum_{m=-\infty}^{\infty} \chi_{j}[2m] z^{-2m}$ $\eta = -\infty$ $\eta : \text{even}$ $(\eta = 2m)$ $= \sum_{n=1}^{\infty} \alpha[n] = \frac{-2m}{2}$ $= \sum_{m=1}^{\infty} \chi[m] \left(\mathbb{Z}^2\right)^{-m} = H(\mathfrak{Z}^2)$

BLOCK DIAGRAM REPRESENTATION







Prooctice Populems

 $\chi(z)/\chi(z)$ A(2)/\(5) 10.59

The system is causal.

a) Determine the range of K such that the system is stable.

b) Let K=1, x[n]= (=) +n. Determine y[n].

y[n]= H(==)(==)" solution: $W(z) = X(z) - \frac{K}{2}z^{-1}W(z)$

> W(2) [1+ \frac{1}{3} = 7] = X(2)

Y(2)= W(2)- K 2 W(2)= W(2) [1-K 27]

H(2) = 1-15427, ROC: {2 [2] >[4] }

For the system to be stable, unit viole e ROC

10-47) If 2(n)= (-2)n, 4(n)= 0 4n. 2(n) - 7(n) If a [n] = (1) nu[n], then

 $y[n] = \delta[n] + a \left(\frac{1}{4}\right)^n u[n].$

a) Determine the value of a.

b) Defermine -y[n] when x[n] = 1 + n. $= (1)^{n}$

solution: $y[n] = (-2)^n + (-2) = 0 \Rightarrow + (-2) = 0$.

