

Homework 2: Optimal Control

Prof. Ashish Ranjan Hota

Department of Electrical Engineering, IIT Kharagpur

Q 2.1: Optimal Control of Bilinear Systems

Consider the discrete-time system $x_{k+1} = x_k u_k + 1$ with performance index $J = \frac{1}{2} \sum_{k=0}^{N-1} u_k^2$. Let $N = 2$. Given x_0 , goal is to ensure $x_2 = 0$. Answer the following questions.

1. Write state and co-state equation eliminating optimal input u .
2. Assume λ_2 is known. Solve for λ_1 and λ_0 in terms of λ_2 .
3. Express x_2 in terms of λ_2 and x_0 .
4. If $x_0 = 1$, find optimal state and costate trajectories, optimal control and optimal value of the performance index.

Q 2.2: Optimal Control with Linear Performance Index

Consider the discrete-time system $x_{k+1} = Ax_k + Bu_k$ with performance index $J = S_N x_N + \sum_{k=0}^{N-1} Qx_k + Ru_k$. From the first order necessary condition of optimality, write the state and costate equation that the optimal trajectory needs to satisfy. What problem do you notice?

Q 2.3: (Matlab problem) Minimum Energy and Minimum Fuel Control

Consider the following discrete-time LTI system given by

$$x(k+1) = Ax(k) + Bu(k), \quad A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad x(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad x_T = \begin{bmatrix} 20 \\ 20 \\ 20 \end{bmatrix}.$$

1. Does there exist a sequence of control inputs to drive the states from $x(0)$ to x_T for $T = 1$?
2. What is the smallest value of T for which you can find a control input that drive the states from $x(0)$ to x_T stated above?
3. For $T = 10$, find a sequence of control inputs that minimizes the total energy $\sum_{k=0}^{T-1} u(k)^2$.
4. For $T = 10$, find a sequence of control inputs that minimizes the “fuel” $\sum_{k=0}^{T-1} |u(k)|$.
5. Compare both the inputs on the same plot.
6. Find the state trajectory under both inputs and compare each component of the state in a separate plot.

Q 2.4: Dynamic Programming with Finite States and Actions

Consider the discrete-time system $x_{k+1} = x_k - 0.4x_k^2 + u_k$ with the state and control values are constrained by $0.0 \leq x_k \leq 1.0$, and $-0.4 \leq u_k \leq 0.4$. Suppose the state and input are quantized as $x_k \in \{0.0, 0.5, 1.0\}$, $u_k \in \{-0.4, -0.2, 0.0, 0.2, 0.4\}$. The performance measure to be minimized is $J = \sum_{k=0}^1 (x_k^2 + |u_k|)$.

- (a) Use dynamic programming with linear interpolation to find the optimal control law and the associated cost for all possible values of x_0 and x_1 .
- (b) From the above results, find the optimal control sequence $\{u_0^*, u_1^*\}$ and the minimum cost if the initial state is $x_0 = 1.0$.

Q 2.5: Discrete-time LQR for Scalar System

For the first-order discrete system $x_{k+1} = 1.05 x_k + u_k$, the performance measure to be minimized is

$$J = x_N^2 + \sum_{k=0}^{N-1} (q x_k^2 + r u_k^2).$$

- (a) For the case $N \rightarrow \infty$, solve the discrete Riccati equation for the steady-state solution S_{inf} and the feedback gain K_{inf} as a function of q and r .
- (b) For $q = r = 1$, confirm that the backwards Riccati recursion agrees with this steady-state prediction.
- (c) Compare the performance of the optimal controller (with $q = r = 1$) with the ad-hoc design $u_k = -0.4 x_k$.

Q 2.6: Discrete-time LQR

For the first-order discrete system with $x_k = [x_{1,k} \ x_{2,k}]^\top$ and dynamics $x_{1,k+1} = 0.8x_{1,k} + x_{2,k} + u_k$ and $x_{2,k+1} = 0.6x_{2,k} + 0.5u_k$, the performance measure to be minimized is

$$J = (x_{1,N}^2 + 2x_{2,N}^2) + \sum_{k=0}^{N-1} (0.5x_{1,k}^2 + 0.5x_{2,k}^2 + 0.5u_k^2).$$

Let the initial state be $x_{1,0} = 5, x_{2,0} = 3$ and $N = 10$. Answer the following questions by programming in MATLAB.

- (a) Determine the optimal controller gains for the entire horizon.
- (b) Determine whether there exists a steady-state state feedback controller that is optimal when $N \rightarrow \infty$.
- (c) Modify the above problem so that $x_{1,k}$ tracks the reference $r_k = 2$ for $k \leq 5$ and $r_k = 4$ for $k > 5$.