
Chapter 10

Authentication Requirements

In the context of communications across a network, the following attacks can be iden-
tified:

1. Disclosure:Release of message contents to any person or process not possessing
the appropriate cryptographic key.

2. Traffic analysis: Discovery of the pattern of traffic between parties. In a connection-
oriented application, the frequency and duration of connections could be deter-
mined. In either a connection-oriented or connectionless environment, the num-
ber and length of messages between parties could be determined.

3. Masquerade: Insertion of messages into the network from a fraudulent source.
This includes the creation of messages by an opponent that are purported to
come from an authorized entity. Also included are fraudulent acknowledgments
of message receipt or nonreceipt by someone other than the message recipient.

4. Content Modification: Changes to the contents of a message, including inser-
tion, deletion, transposition, or modification.

5. Sequence modification:Any modification to a sequence of messages between
parties, including insertion, deletion, and reordering.

6. Timing modification: Delay or replay of messages. In a connection-orientated
application, an entire session or sequence of messages could be a replay of some
previous valid session, or individual messages in the sequence could be delayed
or replayed.

7. Repudiation: Denial of receipt of message by destination or denial of transmis-
sion of message by source.

Message authenticationis a procedure to verify that received messages come from
the alleged source and have not been altered. Message authentication may also verify
sequencing and timeliness. Adigital signature is an authentication technique that also
includes measures to counter repudiation by either source or destination.

Any message authentication or digital signature mechanism can be viewed as having
fundamentally two levels. At the lower level, there must be some sort of function that

100

Chapter 10 Authentication Requirements

produces an authenticator: a value to be used to authenticate a message. This lower-
level function is then used as primitive in a higher-level authentication protocol that
enables a receiver to verify the authenticity of a message.

This section is concerned with the types of functions that may be used to produce an
authenticator. These functions may be grouped into three classes, as follows:

1. Message Encryption:The ciphertext of the entire message serves as its authen-
ticator.

2. Message Authentication Code1 (MAC): A public function of the message and
a secret key that produces a fixed length value that serves as the authenticator.

3. Hash Functions: A public function that maps a message of any length into a
fixed length hash value, which serves as the authenticator.

We will mainly be concerned with the last class of function however it must be noted
that hash functions and MACs are very similar except that a hash code doesn’t require
a secret key. With regard to the first class, this can be seen to provide authentication
by virtue of the fact that only the sender and receiver know the key. Therefore the
message could only have come from the sender. However there is also the problem
that the plaintext message should be recognisable as plaintext message (for example if
it was some sort of digitised X-rays it mightn’t be).

10.1 Hash Functions

A hash value is generated by a function H of the form:

h = H(M)

where M is a variable-length message, andH(M) is the fixed length hash value (also
referred to as a message digest or hash code). Figures 10.1 and 10.2 shows the basic
uses of the hash function whereas figure 10.3 shows the general structure of a hash
code.

The hash value is appended to the message at the source at the time when the message
is assumed or known to be correct. The receiver authenticates that message by recom-
puting the hash value. Because the hash function itself is not considered to be secret,
some means is required to protect the hash value (see figures 10.1 and 10.2).

We begin by examining the requirements for a hash function to be used for message
authentication. Because hash functions are, typically, quite complex, it is useful to
examine next some very simple hash functions to get a feel for the issues involved. We
then look at several approaches to hash function design.

1Also known as acryptographic checksum.

101

Chapter 10 Authentication Requirements

Figure 10.1:Basic uses of the hash function.

The purpose of a hash function is to produce a “fingerprint” of a file, message, or other
block of data. To be useful for message authentication, a hash functionH must have
the following properties:

1. H can be applied to a block of data of any size.

2. H produces a fixed-length output.

3. H(x) is relatively easy to compute for any givenx, making both hardware and
software implementations practical.

4. For any given codeh, it is computationally infeasible to findx such thatH(x) =
h.

5. For any given blockx, it is computationally infeasible to findy 6= x with H(y) =
H(x) (sometimes referred to asweak collision property).

6. It is computationally infeasible to find any pair(x, y) such thatH(x) = H(y)
(sometimes referred to asstrong collision property).

102

Chapter 10 Authentication Requirements

Figure 10.2:Basic uses of the hash function (cont.).

The first three properties are requirements for the practical application of a hash func-
tion to message authentication. The fourth property is the “one-way” property; it is
easy to generate a code given a message but virtually impossible to generate a message
given a code. This property is important if the authentication technique involves the
use of a secret value (see figure 10.2e). The secret value itself is not sent; however, if
the hash function is not one-way, an attacker can easily discover the secret value. If
the attacker can observe or intercept a transmission, the attacker obtains the message
M and the hash codeC = H(SAB||M). The attacker then inverts the hash function to
obtainSAB||M = H−1(C). Because the attacker now has bothM andSAB||M , it is a
trivial matter to recoverSAB.

The fifth property guarantees that an alternative message hashing to the same value as
a given message cannot be found. This prevents forgery when an encrypted hash code
is used (see figures 10.1b and c). For these cases, the opponent can read the message
and therefore generate its hash code. But, because the opponent does not have the
secret key, the opponent should not be able to alter the message without detection. If
this property were not true, an attacker would be capable of the following sequence:

1. Observe or intercept a message plus its encrypted hash code.

103

Chapter 10 Authentication Requirements

2. Generate an unencrypted hash code from the message.

3. Generate an alternate message with the same hash code.

A hash function that satisfies the first five properties in the preceding list is referred to
as aweak hash function. If the sixth property is also satisfied, then it is referred to
as astrong hash function. The sixth property protects against a sophisticated class of
attack known as thebirthday attack which we will be looking at later in the notes.
Figure 10.3 shows the general structure of a secure hash code. In the next section we
are going to study a specific algorithm (SHA-1) which will be seen to have this format.
Notice this has a similar structure to the CBC mode used for symmetric algorithms.

Figure 10.3:General Structure of Secure Hash Code.

10.2 The Secure Hash Algorithm

TheSecure Hash Algorithm (SHA)was developed by the National Institute of Stan-
dards and Technology (NIST) and published as a federal information processing stan-
dard (FIPS 180) in 1993; a revised version was issued as FIPS 180-1 in 1995 and
is generally referred to asSHA-1. The actual standards document is entitled Secure
Hash Standard. SHA is based on the MD4 algorithm which is a message digest algo-
rithm that was developed by Ron Rivest at MIT (the “R” in the RSA (Rivest-Shamir-
Adelman) public key encryption algorithm). MD4 was later replaced with the popular
MD5 algorithm also by Ron Rivest however advances in cryptanalysis and computing
power have led to their decline in popularity. Both MD4 and MD5 produce a 128 bit

104

Chapter 10 Authentication Requirements

message digest whereas SHA-1 produces a 160 bit as will be seen. In 2002, NIST
produced a revised version of the standard, FIPS180-2, that defined three new ver-
sions of SHA, with hash value lengths of 256, 384, and 512 bits, known as SHA-256,
SHA-384, and SHA-512 respectively. These new versions have the same underlying
structure and use the same types of modular arithmetic and logical binary operations
as SHA-1. In 2005, NIST announced the intention to phase out approval of SHA-1 and
move to a reliance on the other SHA versions by 2010. Shortly thereafter, a research
team described an attack in which two separate messages could be found that deliver
the same SHA-1 hash using269 operations, far fewer that the280 operations previously
thought needed to find a collision with an SHA-1 hash. This result should hasten the
transition to the other versions of SHA however we will still concentrate on SHA-1 as
the underlying structures of the others is the same.

SHA-1 takes as input a message with a maximum length of less than264 bits and
produces as output a 160 bit message digest. The input is processed in 512-bit blocks.
Figure 10.4 depicts the overall processing of a message to produce a digest. Although
this diagram has MD5 as the hash function the structure is exactly the same for SHA-1
with the exception that the message length is limited in size (its isn’t for MD5) and the
hash value (and intermediate values CVi) are 160 bits and not 128 as shown (which is
the case for MD5).

The processing consists of the following 5 steps:

1. Append padding bits: The message is padded so that its length is congruent to
448 modulo 512 (length≡ 448 (mod 512)). That is, the length of the padded
message is64 bits less than an integer multiple of512 bits. Padding is always
added, even if the message is already of the desired length. Thus, the number
of padding bits is in the range of 1 to 512 bits. The padding consists of a single
1-bit followed by the necessary number of 0-bits.

2. Append length: A block of 64 bits is appended to the message. This block is
treated as an unsigned64-bit integer (most significant byte first) and contains the
length of the original message (before padding).

3. Initialize MD buffer: A 160 bit buffer is used to hold intermediate values and
final results of the Hash function represented as 5, 32 bit registers (A, B, C, D,
E) initialized as follows:

A = 67452301

B = EFCDAB89

C = 98BADCFE

D = 10325476

E = C3D2E1F0

4. Process message in 512 bit (16 word) blocks:The heart of the algorithm is a
module which consists of four “rounds” of processing of20 steps each (see fig-

105

Chapter 10 Authentication Requirements

Figure 10.4:Message Digest Generation Using MD5 (equally applicable to SHA-1 with 160
bits instead of 128 etc.).

ure 10.5). Each round has similar structure but uses a different primitive logical
function (f1, f2, f3 andf4). Each round takes as input the current 512-bit block
being processed (Yq) and the 160-bit buffer value ABCDE and updates the con-
tents of the buffer. Each round also makes use of an additive constantKt where
0 ≤ t ≤ 79 indicates one of the 80 steps across four rounds. In fact, only four
distinct constants are used (one for0 ≤ t ≤ 19, 20 ≤ t ≤ 39, 40 ≤ t ≤ 59 and
60 ≤ t ≤ 79). The output of the fourth round is added (modulo232) to the input
to the first round (CVq) to produce CVq+1.

5. Output after all L 512 bit blocks have been processed the output from the Lth
stage is the 160 bit digest.

106

Chapter 10 Authentication Requirements

Figure 10.5:SHA-1 Processing of a Single 512-bit Block (SHA-1 compression function).

We can summarise the behavior SHA-1 as follows:

CV0 = IV

CVq+1 = SUM32(CVq, ABCDEq)

MD = CVL

where
IV = initial value of the ABCDE buffer, defined in step 3.
ABCDEq = the output of the last round of processing of the qth message block.
L = the number of blocks in the message (including padding and length fields).
SUM32 = Addition modulo232 performed separately on each word of the pair of inputs.
MD = final message digest value.

107

Chapter 10 Authentication Requirements

10.3 Digital Signatures

Message authentication protects two parties who exchange messages from any third
party. However, it does not protect the two parties against each other. Several forms
of dispute between the two are possible. For example, suppose that John sends an
authenticated message to Mary using one of the schemes described earlier. Consider
the following disputes that could arise:

• Mary may forge a different message and claim that it came from John. Mary
would simply have to create a message and append an authentication code using
the key that John and Mary share.

• John can deny sending the message. Because it is possible for Mary to forge a
message, there is no way to prove that John did in fact send the message.

Both scenarios are of legitimate concern. In situations where there is not complete
trust between sender and receiver, something more than authentication is needed. The
most attractive solution to this problem is thedigital signature.

The digital signature is analogous to the handwritten signature. It must have the fol-
lowing properties:

• It must verify the author and the date and time of the signature.

• It must authenticate the contents at the time of the signature.

• It must be verifiable by third parties, to resolve disputes.

Thus, the digital signature function includes the authentication function. On the basis
of these properties, we can formulate the following requirements for a digital signature:

• The signature must be a bit pattern that depends on the message being signed.

• The signature must use some information unique to the sender, to prevent both
forgery and denial.

• It must be relatively easy to produce the digital signature.

• It must be relatively easy to recognise and verify the digital signature.

• It must be computationally infeasible to forge a digital signature, either by con-
structing a new message for an existing digital signature or by constructing a
fraudulent digital signature for a given message.

• It must be practical to retain a copy of the digital signature in storage.

One of the most popular algorithms for implementing digital signatures is discussed
next.

108

Chapter 10 Authentication Requirements

10.3.1 Digital Signature Standard (DSS)

The National Institute of Standards and Technology (NIST) has published FIPS 186
known as the Digital Signature Standard (DSS). The DSS makes use of the Secure
Hash Algorithm (SHA) that we just discussed and presents a new digital signature
technique, the Digital Signature Algorithm (DSA). The DSS was originally proposed
in 1991 and revised in 1993 in response to public feedback concerning the security of
the scheme. There was a further minor revision in 1996. In 2000, an expanded version
of the standard was issued as FIPS 186-2. This latest version also incorporates digital
signature algorithms based on RSA and on elliptic curve cryptography. In this section,
we discuss the original DSS algorithm.

The DSS uses an algorithm that is designed to provide only the digital signature func-
tion. Unlike RSA, it cannot be used for encryption or key exchange. Nevertheless, it is
a public-key technique. It is based on the difficulty of computing discrete logarithms
(as is the Diffie Hellman key exchange).

Figure 10.6:The Digital Signature Algorithm (DSA).

The overall scheme is seen in figure 10.6. There are three parameters that are public
and can be common to a group of users. A 160-bit prime numberq is chosen. Next, a
prime numberp is selected with a length between 512 and 1024 bits such thatq divides
(p − 1). Finally, g is chosen to be of the formh(p−1)/q mod p, whereh is an integer
between14 and (p− 1) with the restriction thatg must be greater than 1.

With these numbers in hand, each user selects a private key and generates a public key.
The private keyx must be a number from1 to (p−1) and should be chosen randomly or

109

Chapter 10 Authentication Requirements

pseudorandomly. The public key is calculated from the private key asy = gx mod p.
The calculation ofy is relatively straightforward. However findingx given the other
parameters appears not to be.

To create a signature, a user calculates two quantities,r ands, that are functions of
the public key components (p, q, g), the user’s private key (x), the hash code of the
message H(M), and an additional integerk that should be generated randomly or pseu-
dorandomly and be unique for each signing.

At the receiving end, verification is performed using the formulas shown in Figure
10.6. The receiver generates a quantityv that is a function of the public key component,
the sender’s public key, and the hash code of the incoming message. If this quantity
matches ther component of the signature, then the signature is validated.

Figure 10.7 depicts the functions of signing and verifying. The structure of the algo-
rithm, as revealed in the figure, is quite interesting. Note that the test at the end is on
the valuer, which does not depend on the message at all. Instead,r is a function ofk
and the three global public-key components. The multiplicative inverse ofk mod q is
passed to a function that also has as inputs the message hash code and the user’s pri-
vate key. The structure of this function is such that the receiver can recoverr using the
incoming message and signature, the public key of the user, and the global public key.
It is certainly not obvious from figure 10.7 that such a scheme would work. However
it has been proven that is does.

Given the difficulty of taking discrete logarithms, it is infeasible for an opponent to
recoverK from r or to recoverx from s.

Figure 10.7:DSS Signing and Verifying.

110

