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ABSTRACT

Devising a complete and correct set of roles has been recog-
nized as one of the most important and challenging tasks in
implementing role based access control. A key problem re-
lated to this is the notion of goodness/interestingness – when
is a role good/interesting? In this paper, we define the role
mining problem (RMP) as the problem of discovering an op-
timal set of roles from existing user permissions. The main
contribution of this paper is to formally define RMP, and
analyze its theoretical bounds. In addition to the above ba-
sic RMP, we introduce two different variations of the RMP,
called the δ-approx RMP and the Minimal Noise RMP that
have pragmatic implications. We reduce the known “set ba-
sis problem” to RMP to show that RMP is an NP-complete
problem. An important contribution of this paper is also to
show the relation of the role mining problem to several prob-
lems already identified in the data mining and data analysis
literature. By showing that the RMP is in essence reducible
to these known problems, we can directly borrow the exist-
ing implementation solutions and guide further research in
this direction.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls; H.2.8 [Database Management]: Database
Appliations—Data Mining

General Terms
Security

Keywords
RBAC, role engineering, role mining

∗The work is supported in part by the National Science
Foundation under grant IIS-0306838.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’07, June 20-22, 2007, Sophia Antipolis, France.
Copyright 2007 ACM 978-1-59593-745-2/07/0006 ...$5.00.

1. INTRODUCTION
Role-based access control (RBAC) has been adopted suc-

cessfully by a variety of commercial systems. As a result,
RBAC has become the norm in many of today’s organiza-
tions for enforcing security. Basically, a role is nothing but
a set of permissions. Roles represent organizational agents
that perform certain job functions within the organization.
Users, in turn, are assigned appropriate roles based on their
qualifications [18, 3].

However, one of the major challenges in implementing
RBAC is to define a complete and correct set of roles. This
process, known as role engineering [2], has been identified
as one of the costliest components in realizing RBAC [4].
Essentially, role engineering is the process of defining roles
and assigning permissions to them.

There are two basic approaches towards role engineering:
top-down and bottom-up. Under the top-down approach,
roles are defined by carefully analyzing and decomposing
business processes into smaller units in a functionally inde-
pendent manner. These functional units are then associated
with permissions on information systems. In other words,
this approach begins with defining a particular job function
and then creating a role for this job function by associat-
ing needed permissions. Often, this is a cooperative process
where various authorities from different disciplines under-
stand the semantics of business processes of one another
and then incorporate them in the form of roles. Since there
are often dozens of business processes, tens of thousands of
users and millions of authorizations, this is rather a diffi-
cult task. Therefore, relying solely on a top-down approach
in most cases is not viable, although some case studies [19]
indicate that it has been done successfully by some organi-
zations (though at a high cost).

In contrast, since organizations do not exist in a vacuum,
the bottom-up approach utilizes the existing permission as-
signments to formulate roles. Starting from the existing
permissions before RBAC is implemented, the bottom-up
approach aggregates these into roles. It may also be advan-
tageous to use a mixture of the top-down and the bottom-up
approaches to conduct role engineering. While the top-down
model is likely to ignore the existing permissions, a bottom-
up model may not consider business functions of an organi-
zation [9]. However, the bottom-up approach excels in the
fact that much of the role engineering process can be auto-
mated. Role mining can be used as a tool, in conjunction
with a top-down approach, to identify potential or candidate
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roles which can then be examined to determine if they are
appropriate given existing functions and business processes.

There have been several attempts to propose good bottom-
up techniques to finding roles. Kuhlmann et al. [10] present
a clustering technique similar to the well known k-means
clustering, which requires pre-defining the number of clus-
ters. In [20], Schlegelmilch and Steffens propose an ag-
glomerative clustering based approach to role mining (called
ORCA), which discovers roles by merging permissions ap-
propriately. However, in ORCA, the order in which permis-
sions are merged determines the outcome of roles. More-
over, it does not allow overlapping roles (i.e., a user cannot
play multiple roles), which is a significant drawback. More
recently, Vaidya et al. [21] propose an approach based on
subset enumeration, called RoleMiner, which eliminates the
above limitations.

An inherent problem with all of the above approaches is
that there is no formal notion of goodness/interestingness of
a role. All of the algorithms above present heuristic ways
to find a set of candidate roles. While offering justifications
for the identified roles, there is no integrative view of the
entire set of roles. For insightful bottom-up analysis, we
need to define interestingness metrics for roles. [21] takes
a first step towards this by ordering candidate roles on the
basis of their support (i.e., roles that are more prevalent are
ordered higher). However, this metric still is quite ad-hoc
and preliminary. Also, while one may come up with inter-
estingness metrics for a role by itself, this does not directly
lead to the notion of a good collection of roles. Indeed, there
is no formal definition of what is a good collection of roles.
Defining this is critical for the security administrator to gain
confidence and be able to fully utilize the output of any role
mining algorithm beyond a piece-meal fashion.

The main contribution of this paper is to formally define
the role mining problem, and analyze its theoretical bounds.
Assuming that we can represent the user permissions as a
binary matrix, informally, we define the basic role mining
problem as follows: Given a m × n binary matrix A repre-
senting the user-permissions, decompose A into two matri-
ces B and C, where B is a m × k matrix representing the
user-role assignment and C is k×n matrix representing the
role-permission association, such that k is minimal.

It is important to note that it is quite easy to come up
with some decomposition of matrix A. For example, two
extreme cases are 1) where each user is placed in a role by
itself (i.e., k = m, B = I , the identity matrix, and C = A),
and 2) where each permission is placed in a role by itself
(i.e., k = n, B = A, and C = I , the identity matrix). Both
of these decompositions are accurate, but are not necessarily
minimal. An alternative decomposition, is to place all users
in a single role (i.e., k = 1). However, this decomposition
is likely to be very inaccurate unless all of the users indeed
have the same set of permissions. In none of these cases
are the roles likely to be accurate (i.e., close to reality).
What we are really interested in, is a fairly accurate set of
roles. In this regard, we consider the minimal set of roles
as the accurate set. Minimality is a good notion, since it
allows us to formally define the problem. Without semantics
(i.e., human expert knowledge), minimality serves as a best
approximation for realizing good descriptive roles.

One may note that, in a specific implementation of RBAC,
the most useful set of roles may be different from the mini-
mal set. It is analogous to employing the best normalization

in designing a database schema. However, from the practi-
cal point of view, one may denormalize the database for
improving the query response. Similar to our analogous ex-
ample, the minimal set of roles gives us a good set of roles
to begin with. At least, it shows the bare minimum required
to accurately describe the current state of the organization.
We argue that this is likely to be of immense help to the se-
curity administrator. In this paper, we formally define the
basic RMP problem and show that the decision version is
NP-complete by reducing the known NP-complete set basis
problem to this.

We also consider several interesting variations of the ba-
sic RMP, including the δ-approx Role Mining Problem (δ-
approx RMP) and the Minimal Noise Role Mining Problem
(MinNoise RMP). These are of practical importance. Both
the δ-approx RMP and the MinNoise RMP are likely to re-
sult in a lower number of roles than the basic RMP – and
might more accurately model the dynamic state of the or-
ganization. We describe these individually below: While
solving the basic RMP, the goal is to identify the minimal
set of roles such that the original user-permission assign-
ment matrix is decomposed. However, if we allow a slight
inaccuracy in the decomposition such that when multiplied
it does not generate the original matrix, it may still be ac-
ceptable. It is this variation of the basic RMP that we rec-
ognize as the δ-approx RMP. Moreover, when discovering
roles, one may state the number of roles to be identified.
Given the specified set of roles, one may come up with a de-
composition of the user-permission assignment. Note that,
in this process, since we rigidly set the order of the matri-
ces to be decomposed, they may not generate the original
matrix when multiplied. This discrepancy denoted as noise
should be at a minimum. We recognize this problem as the
MinNoise RMP. We show that the complexity of both the
δ-approx RMP and the MinNoise RMP is NP-complete.

We have discovered that our basic role mining problem is
identical to the problem of database tiling recently proposed
by Geerts et al. [6]. We show how our basic RMP can be
mapped to the database tiling and present an algorithm to
use tiling to discover roles. Similarly, the recently proposed
discrete basis problem [14] is identical to the MinNoise RMP,
and we show the mapping between our MinNoise RMP to
the discrete basis problem.

This paper is organized as follows. In section 2 we review
the RBAC model and some preliminary definitions employed
in the paper. In section 3, we define our basic role mining
problem as well as its variations and prove results about
their complexity. In sections 4 and 5 we show the mappings
of our RMP to the database tiling and the discrete basis
problem, respectively. Finally, section 6 provides some in-
sight into our ongoing and future research.

2. PRELIMINARIES
We adopt the NIST standard of the Role Based Access

Control (RBAC) model [3]. For the sake of simplicity, we
do not consider sessions, role hierarchies or separation of
duties constraints in this paper. In other words, we restrict
ourselves to RBAC0 without considering sessions.

Definition 1 (RBAC).

• U, ROLES, OPS, and OBJ are the set of users, roles,
operations, and objects.
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• UA ⊆ U × ROLES, a many-to-many mapping user-
to-role assignment relation.

• PRMS (the set of permissions) ⊆ {(op, obj)|op ∈ OPS
∧

obj ∈ OBJ}
• PA ⊆ ROLES × PRMS, a many-to-many mapping

of role-to-permission assignments.1

• UPA ⊆ U × PRMS, a many-to-many mapping of
user-to-permission assignments.

• assigned users(R) = {u ∈ U |(u, R) ∈ UA}, the map-
ping of role R onto a set of users.

• assigned permissions(R) = {p ∈ PRMS|(p,R) ∈
PA}, the mapping of role R onto a set of permissions.

We now need some additional definitions from [13] per-
taining to boolean matrix multiplication:

Definition 2 (Boolean matrix multiplication). A
Boolean matrix multiplication between Boolean matrices A ∈
{0, 1}m×k and B ∈ {0, 1}k×n is A ⊗ B = C where C is in
space {0, 1}m×n and

cij =
k∨

l=1

(ail ∧ blj).

Definition 3 (L1 norm). The L1 norm of a d-
dimensional vector v ∈ Xd, for some set X, is

‖ v ‖1 =
d∑

i=1

|vi|.

The L1-norm also defines a distance metric between vec-
tors, referred to as L1-metric and defined as

‖ v − w ‖1 =

d∑

i=1

|vi − wi|.

Finally, the L1-metric between vectors is expanded to ma-
trices in a natural way, i.e., if A and B are matrices in Xn×m,
for some set X, then

‖ A−B ‖1 =

n∑

i=1

‖ ai − bi ‖1 =

n∑

i=1

m∑

j=1

|aij − bij |.

The L1-metric allows us to count the difference between
two matrices – i.e., to figure out how good an approxima-
tion one is of the other. When the L1-metric is 0, the two
matrices are identical. Other metrics (and distances) can
also be used – [13] discusses some alternatives and their im-
plications.

3. THE ROLE MINING PROBLEM
Given m users, n permissions and k roles (i.e., |U | = m,
|PRMS| = n, |ROLES| = k), the user-to-role mapping can
be represented as an m× k boolean matrix where a 1 in cell
{ij} indicates the assignment of role j to user i. Similarly,
the role-to-permission mapping can be represented as an
k × n boolean matrix where a 1 in cell {ij} indicates the

1Note that in the original NIST standard [3], PA was de-
fined as PA ⊆ PRMS×ROLES, a many-to-many mapping
of permission-to-role assignments.

assignment of permission j to role i. Finally, the user-to-
permission mapping can be represented as an m×n boolean
matrix where a 1 in cell {ij} indicates the assignment of
permission j to user i.

We now introduce the notion of δ-consistency between
UA, PA, and UPA which is critical to the notion of accuracy
of the roles. The L1 norm defined above is useful in defining
this.

Definition 4 (δ-Consistency). A given user-to-role
assignment UA, role-to-permission assignment PA and user-
to-permission assignment UPA are δ-consistent if and only
if

‖M(UA)⊗M(PA)−M(UPA) ‖1 ≤ δ

where M(UA), M(PA), and M(UPA) denote the matrix
representation of UA, PA and UPA respectively.

Essentially, the notion of δ-consistency allows us to bound
the degree of difference between the user-to-role assignment
UA, role-to-permission assignment PA and user-to-permission
assignment UPA. For UA, PA, and UPA to be δ-consistent,
the user-permission matrix generated from UA and PA should
be within δ of UPA.

3.1 RMP and its variants
In this section, we present the basic RMP and two of its

variants, δ-approx RMP and the MinNoise RMP.

Definition 5 (Role Mining Problem (RMP)). Given
a set of users U , a set of permissions PRMS, and a user-
permission assignment UPA, find a set of roles, ROLES,
a user-to-role assignment UA, and a role-to-permission as-
signment PA 0-consistent with UPA and minimizing the
number of roles, k.

Given the user-permission matrix, the basic Role Mining
problem asks us to find a user-to-role assignment UA and
a role-to-permission assignment PA such that UA and PA
exactly describe UPA while minimizing the number of roles.
Put another way, it asks us what is the minimum number
of roles necessary to fully describe the given data (and what
are those roles, and the corresponding user assignments)?

While exact match is a good thing to have, at times we
may be satisfied with an approximate match. For example,
consider a case where we have 1000 users and 100 permis-
sions. The size of UPA is 5000 (i.e., 5000 user-permission
assignments are allowed out of the possible 100, 000). Now,
suppose 100 roles are required to exactly match the given
user-permission data. However, if we allow approximate
matching – i.e., if it is good enough to match 99% of the
matrix (4950 of the user-permission assignments), assume
that the minimum number of roles required is only 60. As
long as we do not add any spurious permissions (i.e., no ex-
tra 1s are added), the second case is clearly better than the
first, since we significantly reduce the number of roles. This
significantly reduces the burden of maintenance on the secu-
rity administrator while leaving only a few user-permission
assignments uncovered. Also, any given user-permission as-
signment is only a snapshot of the current state of the or-
ganizations. Permissions and (to a lesser extent, Roles) are
dynamic. Thus while exact match may be the best descrip-
tor in the static case, it is probably not good for the dynamic
case. Approximate match might be a prudent choice for dy-
namic data. The notion of δ-consistency is useful, since it
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p1 p2 p3 p4 p5

u1 0 1 0 0 1
u2 1 1 1 0 1
u3 1 1 0 1 1
u4 1 1 1 0 0

Table 1: User-privilege assignment

helps to bound the degree of approximation. Therefore, we
now define the approximate Role Mining Problem using δ-
consistency.

Definition 6 (δ-approx RMP). Given a set of users
U , a set of permissions PRMS, a user-permission assign-
ment UPA, and a threshold δ, find a set of roles, ROLES,
a user-to-role assignment UA, and a role-to-permission as-
signment PA, δ-consistent with UPA and minimizing the
number of roles, k.

It should be clear that the basic Role Mining Problem
defined earlier is simply a special case of the δ-approx RMP
(with δ set to 0). Instead of bounding the approximation,
and minimizing the number of roles, it might be interesting
to do the reverse – bound the number of roles, and minimize
the approximation. We call this the Minimal Noise Role
Mining Problem (MinNoise RMP). Thus, we fix the number
of roles that we would like to find, but now we want to
find those roles that incur minimal difference with respect
to the original user-permission matrix (UPA). The security
administrator might want to do this when he is looking for
the top-k roles that describe the problem space well enough,
and are still (in some sense) robust to noise.

Definition 7 (Minimal Noise RMP). Given a set of
users U , a set of permissions PRMS, a user-permission
assignment UPA, and the number of roles k, find a set of k
roles, ROLES, a user-to-role assignment UA, and a role-
to-permission assignment PA, minimizing

‖M(UA)⊗M(PA)−M(UPA) ‖1
where M(UA), M(PA), and M(UPA) denote the matrix
representation of UA, PA and UPA respectively.

We can clarify these problems further by means of an ex-
ample. Table 1 shows a sample user-privilege assignment
(UPA), for 4 users and 5 privileges. Tables 2(a) and 2(b)
depict a user-role assignment (UA) and role-privilege assign-
ment (PA) that completely describe the given user-privilege
assignment (i.e., M(UA) ⊗M(PA) = M(UPA)). Indeed,
the given UA, PA, and ROLES are optimal. It is not
possible to completely describe the given UPA with less
than 3 roles. Tables 3(a) and 3(b) depict the optimal user-
role assignment (UA) and role-privilege assignment (PA) 2-
consistent, 3-consistent, as well as 4-consistent with UPA.
Tables 3(c) and 3(d) show the optimal user-role assignment
(UA) and role-privilege assignment (PA) 5-consistent with
UPA. Similarly, if we set k = 2, Tables 3(a) and 3(b) de-
pict one possible optimal minimal noise UA and PA. Ta-
bles 4(a) and 4(b) depict another optimal UA and PA for
the MinNoise RMP. Both represent correct solutions to the
MinNoise RMP, though the second one does not incorrectly
cover any 0s with 1s.

r1 r2 r3

u1 0 0 1
u2 1 0 1
u3 0 1 1
u4 1 0 0

(a) User-role as-
signment

p1 p2 p3 p4 p5

r1 1 1 1 0 0
r2 1 1 0 1 0
r3 0 1 0 0 1

(b) Role-permission as-
signment

Table 2: Basic Role Mining Problem

r1 r2

u1 0 1
u2 1 1
u3 1 1
u4 1 0

(a) User-
role as-
signment

p1 p2 p3 p4 p5

r1 1 1 1 0 0
r2 0 1 0 0 1

(b) Role-permission as-
signment

r1

u1 0
u2 1
u3 1
u4 1

(c)
User-
role
assign-
ment

p1 p2 p3 p4 p5

r1 1 1 1 0 1

(d) Role-permission as-
signment

Table 3: δ-approx RMP

r1 r2

u1 0 1
u2 1 1
u3 0 1
u4 1 0

(a) User-
role as-
signment

p1 p2 p3 p4 p5

r1 1 1 1 0 0
r2 0 1 0 0 1

(b) Role-permission as-
signment

Table 4: MinNoise RMP
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3.2 Complexity
Before proceeding any further, we would like to estab-

lish some results on the complexity of these problems. The
Role Mining Problem, the δ-approx RMP, and the MinNoise
RMP Problem are all optimization problems. The theory of
NP-completeness applies to decision problems. Therefore,
in order to consider the complexity of the problems, we now
frame the decision version of these problems.

Definition 8 (decision RMP). Given a set of users
U , a set of permissions PRMS, a user-permission assign-
ment UPA, and k ≥ 0, are there a set of roles, ROLES,
a user-to-role assignment UA, and a role-to-permission as-
signment PA 0-consistent with UPA such that |ROLES| ≤
k?

Definition 9 (decision δ-approx RMP). Given a set
of users U , a set of permissions PRMS, a user-permission
assignment UPA, a threshold δ ≥ 0, and k ≥ 0, are there a
set of roles, ROLES, a user-to-role assignment UA, and a
role-to- permission assignment PA, δ-consistent with UPA
such that |ROLES| ≤ k?

Definition 10 (decision MinNoise RMP). Given a
set of users U , a set of permissions PRMS, a user-permission
assignment UPA, the number of roles k, and a noise thresh-
old θ, are there a set of k roles, ROLES, a user-to-role
assignment UA, and a role-to-permission assignment PA,
such that

‖M(UA)⊗M(PA)−M(UPA) ‖1 ≤ θ

where M(UA), M(PA), and M(UPA) denote the matrix
representation of UA, PA and UPA respectively?

We can now prove that decision RMP, decision δ-approx
RMP, and decision MinNoise RMP are all NP-complete (In-
deed, some of these results have already been obtained in the
literature[13, 6]). Proving that a problem π is NP-Complete
consists of four main steps [5]:

1. showing that π is in NP

2. selecting a known NP-complete problem π′

3. constructing a transformation f from π′ to π, and

4. proving that f is a (polynomial) transformation

The problem π′ used to reduce from is the “set basis prob-
lem” defined below:

Definition 11 (Set basis Problem). Given a collec-
tion C of subsets of a finite set S, and a positive integer
K ≤ |C|, is there a collection B of subsets of S with |B| = K
such that, for each c ∈ C, there is a sub-collection of B
whose union is exactly c?

Theorem 1. The decision RMP is NP-complete.

Proof. • The decision Role Mining Problem is in
NP. The set of roles ROLES, the user-to-role assign-
ment UA, and the role-to-permission assignment PA
together form the polynomial certificate/witness.

• We select the set basis problem as π′

• The transformation is quite simple. Given an instance
of the set basis problem, here is how we transform it
to an instance of the decision Role Mining Problem:
S denotes the permissions PRMS. C denotes UPA.
Thus, every set c ∈ C stands for one user u. Now, the
answer to the decision role mining problem directly
provides the answer to the set basis problem.

• The transformation is clearly polynomial (since it is a
direct one-to-one mapping).

Theorem 2. The decision δ-approx RMP is NP-complete.

Proof. • The decision δ-approx RMP is in NP. The
set of roles ROLES, the user-to-role assignment UA,
and the role-to-permission assignment PA together form
the polynomial certificate/witness. It only takes poly-
nomial time to compute

‖M(UPA)− (M(UA)⊗M(PA)) ‖1
and ensure that it is less than or equal to δ, and that
|ROLES| ≤ k.

• We select the set basis problem as π′

• The transformation is quite simple. Given an instance
of the set basis problem, here is how we transform it
to an instance of the decision Role Mining Problem:
S denotes the permissions PRMS. C denotes UPA.
Thus, every set c ∈ C stands for one user u. δ is set to
0. Now, the answer to the decision approx role mining
problem directly provides the answer to the set basis
problem.

• The transformation is clearly polynomial.

Theorem 3. The decision MinNoise RMP is NP-complete.

Proof. • The decision MinNoise RMP is in NP. The
set of roles ROLES, the user-to-role assignment UA,
and the role-to-permission assignment PA together form
the polynomial certificate/witness. It only takes poly-
nomial time to compute

‖M(UPA)− (M(UA)⊗M(PA)) ‖1
and ensure that it is less than or equal to θ, and
|ROLES| = k.

• We select the set basis problem as π′

• The transformation is quite simple. Given an instance
of the set basis problem, here is how we transform it
to an instance of the decision Role Mining Problem:
S denotes the permissions PRMS. C denotes UPA.
Thus, every set c ∈ C stands for one user u. Set
θ = 0. Now, the answer to the decision MinNoise RMP
directly provides the answer to the set basis problem.

• The transformation is clearly polynomial.
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Figure 1: An example of mapping basic RMP to Minimum Tiling Problem

Instead of asking for the user-role assignment, UA, as well
as the role-permission assignment PA, we could consider the
problem of obtaining each individually. For exact cover, [14,
13] shows that given the set of roles, and the role-permission
assignment, one can determine the user-role assignment in
polynomial time. However, when an approximate answer
is required, such as in the MinNoise RMP, determining the
user-role assignment requires O(2kmn) time – this is known
as fixed parameter tractable since the solution is exponential
only in terms of a fixed parameter. Unfortunately, k refers
to the number of roles which is likely to be quite large in
practice, making this quite infeasible. It remains to be seen
if finding the user-role assignment in the case of the δ-approx
RMP is any easier.

In the following sections, we show that the RMP along
with several variants can be mapped to other problems al-
ready studied in the data mining and data analysis litera-
ture. We discuss the complexity for each variant along with
suggested methods for solving the problem.

4. MAPPING THE RMP TO THE TILING
PROBLEM

In this section, we demonstrate the equivalence of the Role
Mining Problem with the Tiling Databases problem. This
mapping allows us to directly borrow existing implementa-
tion solutions to RMP. In fact, the original Database Tiling
paper by Geerts et al. [6] looked at a set of five problems,
one of which exactly matches the role mining problem. We
now describe the relevant problems studied and then discuss
their implications.

4.1 Tiling Databases
Consider a binary matrix of size m×n where the number

of rows, m, can be viewed as the number of objects and
the number of columns, n, can be viewed as the number of
attributes. A 1 in cell {ij} denotes that object i has/owns
attribute j (i.e., some relationship exists between object i
and attribute j). Now, let an itemset I denote a collection

(subset) of the attributes. Then a tile t corresponding to an
itemset I consists of the columns in itemset I as well as all
the rows that have 1s in all the columns in I . The area of a
tile is defined as the cardinality of the tile (i.e., the number
of 1s in the tile).

Informally, a tile consists of a block of ones in a boolean
database as shown in Figure 1(b). A collection of (possibly
overlapping) tiles constitutes a tiling. Among the collection
of 5 related problems defined in [6], the Minimum Tiling
problem is of the most interest to us, which is defined below.

Definition 12 (Minimum Tiling). Given a boolean ma-
trix, find a tiling of the matrix with area equal to the total
number of 1s in the matrix and consisting of the least possi-
ble number of tiles.

4.2 Mapping Basic RMP to Minimum Tiling
To see that the Minimum Tiling problem corresponds ex-

actly to the basic RMP, one must first see how a tile corre-
sponds to a role. As defined above, a tile is just a block of 1s
– i.e., a collection of rows and columns that all have 1s. Re-
member that without semantics, a role is simply a collection
of permissions. Thus, inherently, in any tile, the collection
of the columns provides the role-to-permission assignment
(PA) for that role. At the same time, the collection of rows
denotes those users/entities that have that role – thus the
collection of rows corresponds to the user-to-role assignment
(UA) for that role. As such, any tiling corresponds to a set
of roles and their role/permission and user/role assignments.
If the tiling completely covers the entire matrix – then all
1s have been covered, meaning that all user/permission as-
signments have been covered. Since each tile corresponds to
a role, if the tiling is minimal and covers the entire matrix,
this means that we have found a set of minimal roles such
that they completely describe the given user-permission as-
signment.

The following example clearly demonstrates this mapping.
In the context of tiling databases, Figure 1(a) shows the
boolean matrix representing a transactional database con-
sisting of 4 transactions and 7 items. Rows denote the trans-
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actions and columns denote the items. We may order trans-
actions from top to bottom sequentially as 1 – 4 and items
from left to right as 1 – 7. A 1 in cell {ij} represents that
transaction i contains item j. Figure 1(b) shows a tiling of
the matrix consisting of 3 tiles. The shaded region repre-
sents a tile. Thus, Tile 1={(1,1), (1,2), (3,1), (3,2), (4,1),
(4,2)}. Tile 2={(2,4), (2,5), (3,4), (3,5)} and Tile 3={(1,5),
(1,6), (1,7), (2,5), (2,6), (2,7)}. As one can see, Tiles 2 and
3 overlap on cell (2, 5). Figure 1(b) also gives the mini-
mum tiling of the matrix. It is not possible to find a tiling
the covers the entire matrix with less than 3 tiles. We can
view the same problem from the role mining perspective.
As described before, each tile corresponds to a role. Fig-
ure 1(c) and 1(d) show an optimal UA and PA, such that
M(UA) ⊗M(PA) = M(UPA). Again, the decomposition
is optimal in the sense that it is impossible to find only two
roles such that UA and PA will be 0-consistent with UPA.

Formally, we can reduce the Minimum Tiling problem to
the basic RMP as follows.

Theorem 4. The Minimum Tiling problem is identical
to the basic Role Mining Problem.

Proof. To show that the two problems are identical we
show that their inputs and outputs exactly match. Thus,
for every input instance, the output of both problems have
a direct one-to-one mapping.

• The input to both problems is a m×n boolean matrix.

• For any problem instance, the Minimum Tiling prob-
lem returns a set of tiles that completely cover the
input while minimizing the number of tiles. Each tile
corresponds to a role, R. For each tile, we extract the
set of columns C, in the tile. For each column c ∈ C,
add the assignment {c, R} to PA. Similarly, for each
row i, belonging to the tile, add the assignment {i, R}
to UA. Add R to ROLES.

• The resulting set of roles (ROLES), user-role assign-
ment (UA), and permission-role assignment (PA) are
guaranteed to be a solution to the basic RMP. (i.e.,
UA and PA are 0-consistent with the corresponding
UPA, and the number of roles is minimal). To prove
the 0-consistency, it is sufficient to note that UA⊗PA
gives us the original tiling of the input matrix which is
equivalent to the original UPA. We can prove the min-
imality by contradiction. Assume that a different solu-
tion to the RMP exists – consisting of ROLES′, UA′

and PA′ where |ROLES′| < |ROLES|. In this case,
we can transform this solution into a corresponding
solution for tiling. For each role r ∈ ROLES′, create
the corresponding tile tR consisting of the permissions
given by PA′ and the users given by UA′. The union
of all tiles

⋃
R TR gives a tiling of the matrix. This

tiling covers the entire matrix since UA′ and PA′ are
0-consistent with UPA. However, the number of tiles
is the same as |ROLES′| which is less than |ROLES|.
But that means that the earlier solution is not min-
imal – and we have a contradiction. Therefore, the
solution to the tiling databases problem directly maps
to a solution for the role mining problem.

Thus, the Minimum Tiling problem exactly corresponds
to the basic RMP.

4.3 Algorithm to Discover Minimal Roles
Since the Minimum Tiling problem is equivalent to the

basic RMP, the algorithms developed for Minimum Tiling
now directly apply. [6] proposes a greedy approximation al-
gorithm to find the minimum tiling of any given database.
This algorithm depends on finding all maximal tiles having
an area over a given threshold. A depth first search strat-
egy is used to find all large tiles. [6] prove that the Mini-
mum Tiling problem can be approximated within the factor
O(log mn), given an oracle that finds for any database D
and tiling T , the tile t such that the area(T ∪ t) is the max-
imum (i.e., the oracle returns the tile which covers as much
of the remaining uncovered part of the database). Such an
oracle can be implemented reasonably efficiently by adapt-
ing the maximal tile algorithm. [6] provides more detail on
this. We now briefly present the adapted algorithm for the
basic RMP.

Algorithm 1 presents the basic RMP algorithm. It con-
sists of two phases. In the first phase, we find a minimum
tiling for the given UPA. In the second phase, we convert
the tiling into ROLES, UA, and PA. As described earlier,
phase 1 uses a simple greedy strategy of adding the largest
uncovered tile to the current tiling, until UPA is completely
covered (i.e., the largest uncovered tile remaining is empty).
Algorithm 2 describes the procedure for finding the largest
uncovered tile from UPA.

Algorithm 1 RMP(UPA)

1: {Find the minimum tiling for UPA}
2: T ← {}
3: while (T ′ ← LUTM(UPA,T )) �= {} do
4: T ← T ∪ T ′

5: end while
6: {Convert the minimum tiling into UA and PA}
7: ROLES ← {}, UA← {}, PA← {}
8: for each tile t ∈ T do
9: Create a new role R and add it to ROLES

10: Extract the set of permissions P in the tile
11: For each permission p ∈ P , add the assignment {p, R}

to PA
12: Extract the set of users U in the tile
13: For each user u ∈ U , add the assignment {u, R} to

UA
14: end for

The LUTM algorithm (Algorithm 2) is a depth-first re-
cursive algorithm that finds the largest uncovered tile. In
order to do a depth-first search, we simply assume some
canonical order over the permissions. The key idea behind
the algorithm is that all large tiles containing a permis-
sion i ∈ PRMS, but not containing any permission lower
than i (according to the canonical order) can be found in
the so-called i-conditional database [7]. In our context,
the P -conditional database UPAP consists of all user-to-
permission assignments that contain P , but from which all
permissions before the last permission in P and that last
permission itself would have been removed. Now, any large
tile that is found in this conditional database, at once implies
a corresponding large tile including P . Therefore, whenever
we want to compute an area associated with a set of permis-
sions P ′ in UPAP , we simply need to add |P | to the width
of the area (|P ′|) and multiply this with |U(P ′)| [6]. We
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(c) Optimal decomposition of UPA into UA and PA with k=2. 

Figure 2: An example of mapping MinNoise RMP to DBP

modify the original LTM algorithm [6] to return the largest
uncovered tile. For this, we keep track of the current largest
uncovered tile, LT, and its uncovered area, LTarea. The
main steps of the algorithm are as follows:

Step 1: Originally, LT and LTarea are initialized to the empty
set and 0, respectively. The current set of permissions
being considered, P is also initialized to the empty set.
Lines 1 and 2 perform this initialization.

Step 2: Line 3 starts the main loop of the algorithm, and iter-
ates over each permission separately. On lines 4-7, if
the uncovered area of the current tile being considered
is larger than the current known best, the best is up-
dated to this. i.e., LT and LTarea always refer to the
largest uncovered tile seen so far. Over here, we need
to clarify what we mean by uncovered area. For any
tile, the uncovered area is the number of 1s that the
tile covers that are not already covered in the existing
tiling – i.e., the uncovered area refers to that part of
the tile that is new and not seen before.

Referring back to Figure 1(b), assume that the current
tiling consists of Tile 1 and Tile 2. Now, the covered
area is simply the distinct number of 1s included in
the Tiling. In our case, since the tiles do not overlap,
the overall covered area is equal to 10 (6 for Tile 1 and
4 for Tile 2).

Now, suppose we are considering Tile 3. The uncov-
ered area of Tile 3 is 5 (since the total number of 1s in
Tile 3 is 6, and one out of those 1s, at position {u2,p5}
is already covered in the current tiling). Thus, given
a database and an existing tiling, whenever a new tile
is considered, it is easy to compute the uncovered area
by simply removing the already covered area from the
area of the tile.

Step 3: Lines 8-12 creates the conditional database UPAP .

Step 4: Finally, line 13 invokes the algorithm recursively to
calculate the largest uncovered area in the smaller con-
ditional database. Since the conditional database pro-
gressively shrinks, the algorithm is guaranteed to fin-
ish after all the permissions have been considered. The

algorithm shown here is quite simple. However, its ef-
ficiency can be significantly improved by using several
pruning techniques – more details can be found in [6].

Algorithm 2 LUTM(UPA,T)

1: P ← {}
2: LT ← {}, AreaLT ← 0
3: for ∀p ∈ PRMS do
4: if uncovered area of t(P ∪ {p}) > AreaLT then
5: LT ← t(P ∪ {p})
6: Update AreaLT to have uncovered area of t(P ∪

{p})
7: end if
8: {Create the conditional database for recursion}
9: UPA(P∪{p}) ← {}

10: for (∀q|(q ∈ PRMS) ∩ (q > p)) do

11: Add (q, U({p}) ∩ U({q})) to UPA(P∪{p})

12: end for
13: Compute T ((P ∪ {p}), UPA(P∪{p})) recursively
14: end for

5. MAPPING THE MINNOISE RMP TO THE
DISCRETE BASIS PROBLEM

In this section, we demonstrate the direct equivalence of
the MinNoise RMP to the Discrete Basis problem. This
mapping again allows us to directly borrow existing imple-
mentation solutions. Miettinen, in his thesis [13], studies a
set of three related problems and shows that these are NP-
complete. We now describe the relevant problems studied
and then discuss their implications.

The Discrete Basis problem [14] studies the problem of
finding a basis from given data. Similar to Principal Com-
ponent Analysis (PCA), the discrete basis problem is a tech-
nique for simplifying a dataset, by reducing multidimen-
sional datasets to lower dimensions for summarization, anal-
ysis, and/or compression. Unlike PCA, the discrete ba-
sis problem only considers boolean data, and finds boolean
bases.
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We have already introduced some of the notation used for
defining the discrete basis problem from [14]. Formally, the
discrete basis problem is defined as follows:

Definition 13 (Discrete Basis Problem). Given a
matrix C ∈ {0, 1}n×d and a positive integer k ≤ min{n, d},
find a matrix B ∈ {0, 1}k×d minimizing

l⊗(C,B) = minS∈{0,1}n×k ‖ C − S ⊗B ‖1

The Discrete Basis Problem only asks for a discrete basis.
A related problem is the Basis Usage problem:

Definition 14 (Basis Usage Problem). Given a ma-
trix C ∈ {0, 1}n×d and a matrix B ∈ {0, 1}k×d, find a matrix
S ∈ {0, 1}n×k minimizing

‖ C − S ⊗B ‖1

Together, the Discrete Basis Problem and the Basis Us-
age Problem correspond to the MinNoise RMP. C represents
the user-privilege assignment, UPA. B represents the role-
permission assignment, PA. S represents the user-role as-
signment UA. The following example clearly demonstrates
this equivalence.

In the context of the discrete basis problem, the input is a
boolean matrix, where the rows and columns might stand for
anything – users and permissions, or documents and words.
For now, we assume that these show the user-permission
assignment, UPA. Thus, Figure 2(a) is a n × m input bi-
nary matrix where n = 4, m = 3. Given the positive integer
k = 2 (k <min{m, n}), Figure 2(b) shows one possible de-
composition into a usage matrix S and basis vector matrix
B. As we can see, in this case |C − S ⊗ B| is 2.2 Figure
2(c) shows a better decomposition since |C − S ⊗ B| =0.
Indeed this is the best (optimal) decomposition possible for
the given input matrix. Note that the discrete basis prob-
lem only asks for the optimal basis B (i.e., role-permission
assignment PA). Given B, the basis usage problem asks for
the optimal usage matrix S (i.e., user-role assignment UA).
In our case, the MinNoise RMP asks for both PA and UA
together. The difference is semantic – in either case, the
problem (as stated) is NP-complete [13].

However, splitting the problem into two parts (i.e., finding
optimal PA, and then finding optimal UA given PA) does
help in the case of the basic RMP. For the basic RMP, we
wish to exactly match the given UPA. In this case, while
the discrete basis problem (finding optimal PA) remains
NP-hard, the basis usage problem (finding UA given PA)
becomes polynomial. A simple algorithm for the basis usage
problem in this case is as follows: For each user and for each
role, if the set of permissions of the role is a subset of the
permissions of the user, then assign that role to that user.
Since we only assign a role to a user as long as all of its
permissions are owned by the user, there are no mistakes
(and we have an exact match). Obviously, this assumes that
the provided basis is complete (i.e., that each user can be
exactly described using some subset of the roles), and thus
all of the required roles are assigned to the user. Thus, after
going through the entire set of users and permissions, we
automatically come up with the optimal UA. The running

2We keep the notations of matrix product and L1 norm as
what they originally are in DBP paper [14], even if they are
slightly different with those used in RMP.

time of this algorithm is clearly polynomial in the size of the
input [13].

Miettinen [13] also shows that the discrete basis problem
cannot be approximated to in polynomial time within any
constant factor unless P = NP . This essentially shuts the
door on any attempt to find an approximation algorithm
for the problem. However, heuristic solutions based on as-
sociation rule mining are proposed and seem to give fairly
good results on simulated data. Again, [13] provides further
details on this. Other heuristics can also be used. One pos-
sibility is to extend the RoleMiner algorithm [21] to find the
best candidates to describe the dataset. As part of future
work, we intend to comprehensively test a set of heuristics
(including the one in [13]) to determine what really works
well in our domain.

6. CONCLUSIONS AND FUTURE
RESEARCH

In this paper, we have formally defined the role mining
problem (RMP) for conducting a bottom-up role engineer-
ing. In addition to the basic RMP, we also define the δ-
approx RMP and the MinNoise RMP that are useful when
performing role mining in real world settings. We have ana-
lyzed the theoretical bounds of the basic RMP as well as its
variants and have shown that all of them are NP-complete
problems. We have mapped these problems to the recently
proposed problems in the area of data mining and data anal-
ysis – the database tiling and the discrete basis. As a result,
we could borrow the implementation solutions proposed for
these problem and directly apply them to solve the basic
RMP and MinNoise RMP. We are currently working towards
a solution to the δ-approx RMP variant.

Also, in mathematics, the problem of finding boolean rank
/ schein rank of a matrix is exactly the same as the basic
RMP. It has been earlier proven that finding the Schein rank
is NP-complete [11]. This matches our results. Other prop-
erties of the boolean rank have also been studied [1]. It
would be interesting to investigate what other results are
directly applicable to our problem and see if they offer new
insight into our domain. Bipartite graphs and bicliques are
another way of defining the RMP and its variants. Sev-
eral papers have looked at different variants of this (e.g., [8]
and [17]) – though most concentrate on finding one biclique
from a bipartite or general graph. Conjunctive clustering
[15] generalizes this to finding multiple bicliques, which is
more relevant to our problem. We also need to see which
solutions among this work can be utilized for our problem.

Since the RMP and its variants are NP-complete, it is im-
portant to come up with heuristic strategies for achieving
implementations with reasonable complexity. In fact, the
recently proposed RoleMiner solution [21] could also serve
as a heuristic strategy for the basic RMP. We intend to in-
vestigate this and other possibilities in real settings to create
a set of tools for the security administrator. Moreover, most
of the role mining approaches employ clustering techniques
or its variants to discover roles. We are currently investigat-
ing other data mining techniques including association rule
mining (specifically closed itemset mining [16, 12]) for role
discovery.
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