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Fuzzy Logic in Control Systems: Fuzzy 
Logic Controller, Part I1 

Abstract -During the past several years, fuzzy control has emerged as 
one of the most active and fruitful areas for research in the applications 
of fuzzy set theory, especially in the realm of industrial processes, which 
do not lend themselves to control by conventional methods because of a 
lack of quantitative data regarding the input-output relations. Fuzzy 
control is based on fuzzy logic-a logical system that is much closer in 
spirit to human thinking and natural language than traditional logical 
systems. The fuzzy logic controller (FLC) based on fuzzy logic provides a 
means of converting a linguistic control strategy based on expert knowl- 
edge into an automatic control strategy. A survey of the FLC is pre- 
sented; a general methodology for constructing an FLC and assessing its 
performance is described; and problems that need further research are 
pointed out. In particular, the exposition includes a discussion of 
fuzzification and defuzzification strategies, the derivation of the database 
and fuzzy control rules, the definition of fuzzy implication, and an 
analysis of fuzzy reasoning mechanisms. 

I. DECISIONMAKING LOGIC 

S WAS noted in Part I of this paper [150], an FLC A may be regarded as a means of emulating a skilled 
human operator. More generally, the use of an FLC may 
be viewed as still another step in the direction of model- 
ing human decisionmaking within the conceptual frame- 
work of fuzzy logic and approximate reasoning. In this 
context, the forward data-driven inference (generalized 
modus ponens) plays an especially important role. In what 
follows, we shall investigate fuzzy implication functions, 
the sentence connectives and and also, compositional 
operators, inference mechanisms, and other concepts that 
are closely related to the decisionmaking logic of an FLC. 

A. Fuzzy Implication Functions 

In general, a fuzzy control rule is a fuzzy relation which 
is expressed as a fuzzy implication. In fuzzy logic, there 
are many ways in which a fuzzy implication may be 
defined. The definition of a fuzzy implication may be 
expressed as a fuzzy implication function. The choice of a 
fuzzy implication function reflects not only the intuitive 
criteria for implication but also the effect of connective 
also. 
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I )  Basic Properties of a Fuuy Implication Function: 
The choice of a fuzzy implication function involves a 
number of criteria, which are discussed in [31, [241, [2l, 
[711, [181, [521, [191, [116], [ S I ,  [72], and [96]. In particular, 
Baldwin and Pilsworth [3] considered the following basic 
characteristics of a fuzzy implication function: fundamen- 
tal property, smoothness property, unrestricted inference, 
symmetry of generalized modus ponens and generalized 
modus tollens, and a measure of propagation of fuzziness. 
All of these properties are justified on purely intuitive 
grounds. We prefer to say that the inference (conse- 
quence) should be as close as possible to the input truth 
function value, rather than be equal to it. This gives us a 
more flexible criterion for choosing a fuzzy implication 
function. Furthermore, in a chain of implications, it is 
necessary to consider the “fuzzy syllogism” [ 1471 associ- 
ated with each fuzzy implication function .before we can 
talk about the propagation of fuzziness. 

Fukami, Mizumoto, and Tanaka [24] have proposed a 
set of intuitive criteria for choosing a fuzzy implication 
function that constrains the relations between the an- 
tecedents and consequents of a conditional proposition, 
with the latter playing the role of a premise in approxi- 
mate reasoning. As is well known, there are two impor- 
tant fuzzy implication inference rules in approximate rea- 
soning. They are the generalized modus ponens (GMP) 
and the generalized modus tollens (GMT). Specifically, 

premise 1: x is A’ 

Dremise 2: if x is A then y is B (GMP) 

consequence: y is B’ 

premise 1: y is B’ 

oremise 2: if x is A then v is B (GMT) 

consequence: x is A’ 

in which A ,  A’, B,  and B’ are fuzzy predicates. The 
propositions above the line are the premises; and the 
proposition below the line is the consequence. The pro- 
posed criteria are summarized in Tables I and 11. We 
note that if a causal relation between “x is A” and “ y  is 
B” is not strong in a fuzzy implication, the satisfaction of 
criterion 2-2 and criterion 3-2 is allowed. Criterion 4-2 is 
interpreted as: if x is A then y is B,  else y is not B. 
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TABLE I 
INTUITIVE CRITEKIA RTLATING PREI AND CONS 

FOR GIVEN PRE2 IN GMP 

x is A'(Pre1) y is BYCons) 

Criterion 1 x is A y is B 

Criterion 2-1 x is very A y is very B 
Criterion 2-2 x is very A y is B 

Criterion 3-1 x is more or less A y is more or less B 
Criterion 3-2 x is more or less A y is B 

Criterion 4-1 x is not A y is unknown 
Criterion 4-2 x is not A y is not B 

Although this relation is not valid in formal logic, we 
often make such an interpretation in everyday reasoning. 
The same applies to criterion 8. 

Families of Fuzzy Implication Functions: Following 
Zadeh's [146] introduction of the compositional rule of 
inference in approximate reasoning, a number of re- 
searchers have proposed various implication functions in 
which the antecedents and consequents contain fuzzy 
variables. Indeed, nearly 40 distinct fuzzy implication 
functions have been described in the literature. In gen- 
eral, they can be classified into three main categories: the 
fuzzy conjunction, the fuzzy disjunction, and the fuzzy 
implication. The former two bear a close relation to a 
fuzzy Cartesian product. The latter is a generalization of 
implication in multiple-valued logic and relates to the 
extension of material implication, implication in proposi- 
tional calculus, modus ponens, and modus tollens [18]. In 
what follows, after a short review of triangular norms and 
triangular co-norms, we shall give the definitions of fuzzy 
conjunction, fuzzy disjunction, and fuzzy implication. 
Some fuzzy implication functions, which are often em- 
ployed in an FLC and are commonly found in the litera- 
ture, will be derived. 

Definition 1: Triangular Noms: The triangular norm * 
is a two-place function from [O, 11 x [O, 11 to [O, 11, i.e., * :  
[O, 11 X [0, 13 + [O, 11, which includes intersection, algebraic 
product, bounded product, and drastic product. The 
greatest triangular norm is the intersection and the least 
one is the drastic product. The operations associated with 
triangular norms are defined for all x,  y E [0,1]: 

2) 

intersection x A y = min ( x ,  y )  

algebraic product x . y  = xy 
bounded product x O y  = max(0,x + y - 1) 

x y = l  
x n y =  y x = l  i 0 x , y < l .  

drastic product 

Definition 2: Triangular CO-Noms: The triangular co- 
norms + is a two-place function from [O, l ]  x [O, l ]  to [O, l], 
i.e. + : [O, 11 X [O, 11 to [O, 11, which includes union, alge- 
braic sum, bounded sum, drastic sum, and disjoint sum. 
The operations associated with triangular co-norms are 

TABLE 11 

FOR GIVEN P R E ~  I N  GMT 
I N T U I T I V E  CRITERIA REIATING PRF.1 ANI) CONS 

v is B'(Pre1) x is AYCons) 

x is not A 
x is not very A 
x is not more or less A 

Criterion 5 y is not B 
Criterion 6 y is not very B 
Criterion 7 y is not more or less B 

Criterion 8-1 y is  B x is unknown 
Criterion 8-2 y is B x is A 

defined for all x ,  y E [O, 11: 

union x v y = max{x, y )  

algebraic sum x * y = x + y - x y  

bounded sum x e y  = min{l,x + y )  

drastic sum 

disjoint sum 

x y = o  
x u y =  y x = o  i 1 x , y > o  

xAy = max(min(x, 1 - y ) ,  
min(1- x ,y ) } .  

The triangular norms are employed for defining conjunc- 
tions in approximate reasoning, while the triangular co- 
norms serve the same role for disjunctions. A fuzzy con- 
trol rule, "if x is A then y is B," is represented by a 
fuzzy implication function and is denoted by A + B, 
where A and B are fuzzy sets in universes U and V with 
membership functions p A  and pB,  respectively. 

Definition 3: Fuuy Conjunction: The fuzzy conjunction 
is defined for all U E U and v E V by 

A + B = A X B  

= / I , x ~ p a ( u ) * p B ( v ) / ( u , v )  

where * is an operator representing a triangular norm. 

defined Cor all U E U and v E V by 
Definition 4: Fuuy Disjunction: The fuzzy disjunction is 

A + B = A X B  

where + is an operator representing a triangular co-norm. 
Definition 5: Fuzzy Implication: The fuzzy implication is 

associated with five families of fuzzy implication functions 
in use. As before, * denotes a triangular norm and + is a 
triangular co-norm. 

4.1) 

4.2) 

4.3) 

4.4) 

Material implication: 

Propositional calculus: 
A + B =(not  A )  + B 

A --+ B = (not A )  + ( A  * B) 

A -+ B = (not A x not B )  + B 
Extended propositional calculus: 

Generalization of modus ponens: 
A 4 B = s u p { c E  [OJ] ,  A * c  < B }  
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4.5) Generalization of modus tollens: 

A + B = i n f { t ~ [ O , l ] ,  B + t < A }  

Based on these definitions, many fuzzy implication func- 
tions may be generated by employing the triangular norms 
and co-norms. For example, by using the definition of the 
fuzzy conjunction, Mamdani's mini-fuzzy implication, Rc,  
is obtained if the intersection operator is used. Larsen's 
product fuzzy implication, R,, is obtained if the algebraic 
product is used. Furthermore, R,, and R,, are obtained 
if the bounded product and the drastic product are used, 
respectively. The following fuzzy implications, which are 
often adopted in an FLC, will be discussed in more detail 
at a later point. 

Mini-operation rule of fuzzy implication [Mamdani]: 
R , = A X B  

Product operation rule of fuzzy implication [Larsen]: 
R , = A x B  

= P A ( U ) P . B ( V ) / ( U ,  v). 
/ " xv  

Arithmetic rule of fuzzy implication [Zadeh]: 
R ,  =(not A x V ) @ ( U  X B )  

Maxmin rule of fuzzy implication [Zadeh]: 
R ,  = ( A  x B)u(not  A x V )  

pJv) ) 'J (1-  ~ A ( u ) ) / ( u , v ) .  

Standard sequence fuzzy implication: 
R , =  A x V + U  X B 

> p J v ) ) / ( u ,  v )  
where 

Boolean fuzzy implication: 
R ,  =(not A x V ) U ( U  x B )  

p.A(u))v(pU,(v))/(u,v). 

Goguen's fuzzy implication: 
R A =  A x V + U  X B 

>> p.B(v>)/(u, v) 

where 
CLA(U)  < r U B ( V )  

PA(U)>> pJv)=  C L B ( U )  P A U )  > P B ( 4 .  i' P A ( V )  

We note that Zadeh's arithmetic rule follows from 
Definition 5.1 by using the bounded sum operator; 
Zadeh's maxmin rule follows from Definition 5.2 by using 
the intersection and union operators; the standard se- 
quence implication follows from Definition 5.4 by using 

from Definition 5.1 by using the union; and Goguen's 
fuzzy implication follows from Definition 5.4 by using the 
algebraic product. 

Choice of a Fuzzy Implication Function: First, we 
investigate the consequences resulting from applying the 
preceding forms of fuzzy implication in fuzzy inference 
and, in particular, the GMP and GMT. The inference is 
based on the sup-min compositional rule of inference. In 
the GMP, we examine the consequence of the following 
compositional equation: 

where 

3) 

B ' =  A'o R 

R fuzzy implication (relation), 
0 sup-min compositional operator, 
A' a fuzzy set which has the form: 

A = / u p A ( u ) / u  
very A = A 2  = j U p ; ( u ) / u  
more or less A = A".' = /up'j45(u)/u 
not A = jU1 - p A ( u ) / u .  

Similarly, in the GMT, we examine the consequence of 
the fcllowing equation: 

where 
A ' = R o B '  

R fuzzy implication (relation) 
B' a fuzzy set that has the form: 

not B = /,,1- p B ( u ) / u  
not very B = jvl - p i ( v ) /  v 
not more or less B = /,,1- p 3 v ) /  v 
B = j v p B ( v ) /  v. 

The Case of R,: Larsen's Product Rule: A method for 
computing the generalized modus ponens and the gener- 
alized modus tollens laws of inference is described in [3]. 
The graphs corresponding to Larsen's fuzzy implication 
R, are given in Fig. 1. The graph with parameter pA is 
used for the GMP, and the graph with p B  is used for the 
GMT. 

Larsen's Product Rule in GMP: Suppose that A' = A* 
(a > 0); then the consequence B; is inferred as follows: 

B; = A" 0 R,, 

The membership function pBL of the fuzzy set B; is 
pointwise defined for all v E V by 

p B; ( ) = sup min ( ll"A ( ) 9 PA( ) pf3 ( 1 
11 E U 

= SUP q 1 -  P > < 4 >  
I 1  E U 

where 

q I L % ) )  A min I P X 4  9 P A ( 4 I L B ( 4 ) .  

{A' = A): The values of Sp(pA(u)) with a parameter 
pB(v), say pB(v)  = 0.3 and 0.8, are indicated in Fig. 2 by a 

1 

the bounded product; Boolean fuzzy implication follows broken line and dotted line, respectively. The member- 

- 
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1 .o 

0.5 

0 

r 

0 1 

(b) 
Fig. 1. 

versus pA with the parameter j ~ ~ .  (b) pR,, versus pB with parametef 
PA. 

Diagrams for calculation of membership functions. (a) flR 

Fig. 2. Approximate reasoning: generalized modus ponens with 
Larsen's product operation rule. 

ship function pBL is obtained by 

CLB$V) = SUP min (PA( U )  9 PA( U) P B (  V) I 
U € U  

= SUP PA(U)CLB(V) 

=pn(V) ,  C L A ( U )  = I -  
{AA'= A2): The values of S,,(p:(u)) with a parameter 

pB(v), say pB(v) = 0.3 and 0.8, are indicated in Fig. 3 by a 
broken line and dotted line, respectively. The member- 
ship function psi may be expressed as 

U € U  

P B $ V )  = SUP min(Cl~(u),CLA(u)pB(v)J 
U € U  

=PB(V). 
{A' = The values of S,,(py(u)) with a parame- 

ter pB(v), say pJv)  = 0.3 and 0.8, are indicated in Fig. 4 

S 

1 .o 

0.5 

0 

Fig. 3. Approximate reasoning: generalized modus ponens with 
Larsen's product operation rule. 

0 

Fig. 4. Approximate reasoning: generalized modus ponens with 
Larsen's product operation rule. 

sp(lgA) 

1 -BA(() 

0.5 . 
.?'. -------.'\ 0.3''\.\. 

0 AA(()  

Fig. 5. Approximate reasoning: generalized modus ponens with 
Larsen's product operation rule. 

by a broken line and dotted line, respectively. The mem- 
bership function pnL is given by 

PB;,(V) = SUP min{l.~"(.),pA(u),H(V~l 
U E ti 

=pn(  v). 
{A' = not A): The values of S,( - pA(u) )  with a pa- 

rameter p s ( ~ ) ,  say p s ( ~ ) =  0.3 and 0.8, are indicated in 
Fig. 5 by a broken line and dotted line, respectively. The 
membership function psh is given by 

P , ( v )  = SUP m i n I l - p A ( U ) , p A ( U ) / * H ( v ) l  
U E ti BP 

P A  V I  
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NdV) 
0 1 

Fig. 6. Approximate reasoning: generalized modus tollens with 
Larsen's product operation rule. 

S 

1 .o 

0.6 

0 
NdV) 

1 

Fig. 7. Approximate reasoning: generalized modus tollens with 
Larsen's product operation rule. 

Larsen's Product Rule in GMT: Suppose that B'= not 
B" (a > 0); then the consequence A; is inferred as fol- 
lows: 

A; = R, o(not B") 

The membership function pA; of the fuzzy set A; is 
pointwise defined for all U E U by 

pA;( U) = sup min {pA(  u ) p B (  v), 1 - 

= SUP w- P%V>> 

v)} 
V € V  

V € V  

where 

s,(1- Prig( V 1) min I PA( U )  PB( V )  > 1 - cL% v) 1 . 
{E= not B}: The values of S,(1- p B ( v ) )  with a pa- 

rameter pA(u), say pA(u) = 0.3 and 0.8, are indicated in 
Fig. 6 by a broken line and dotted line, respectively. The 
membership function pA; is given by 

~ , g ; ( u )  = S ~ P ~ ~ ~ { C L A ( U ) I ~ B ( V ) , ~ - ~ B ( V ) }  
V € V  

- PA( U )  - 
' 

{B'= not B2}: The values of S,(1- &(v)) with a 
parameter pA(u), say pA(u)  = 0.3 and 0.8, are indicated in 

0 

Fig. 8. Approximate reasoning: generalized modus tollens withlarsen's 
product operation rule. 

A 
1 .o 

0.5 

0 

Fig. 9. Approximate reasoning: generalized modus tollens with 
Larsen's product operation rule. 

TABLE 111 
SUMMARY OF INFERENCE RESULTS FOR GENERALIZED MODUS PONENS 

A Very A More or Less A Not A 

PB 0.5 A 

PB 
PB - 

l + P B  
4 s - 1  

1 
,l 
L 

6-1 
T V P B  1 

1 
fi-- 1 
2 V P B  

G 1 

Fig. 7 by a broken line and dotted line, respectively. The 
membership function pA; is given by 

{B'= not The values of S,(1- &j5(v)) with a 
parameter pA(u), say pA(u) = 0.3 and 0.8, are indicated in 
Fig. 8 by a broken line and dotted line, respectively. The 
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TABLE IV 
SUMMARY OF INFERENCE RESULTS FOR GENERALIZED Moous TOI.I .F.NS 

Not B Not Very B Not More or Less B B 

R ,  - . F A )  1 

I 
2 

TABLE V 
SATISFACTION OF VARIOUS Fuzzy IMPLICATION FUNCTIONS UNDER INTUITIVE CRITERIA 

R,  R ,  R,, RP>? R ,  Rh RI, 

Criteria 1 
Criteria 2-1 
Criteria 2-2 
Criteria 3-1 
Criteria 3-2 
Criteria 4-1 
Criteria 4-2 

Criteria 5 
Criteria 6 
Criteria 7 
Criteria 8-1 
Criteria 8-2 

0 

0 

0 

X 

X 

X 
X 

X 
X 
X 
X 
0 

0 

0 

0 

X 

X 

X 
X 

X 
X 
X 
X 
0 

X 
X 
X 
X 
X 

X 

X 
X 
X 

X 

0 

0 

X 
X 
X 
X 
X 

X 

X 
X 
X 
X 
X 

0 

0 
0 
X 
0 
X 
0 
X 

0 
0 
0 
0 
X 

X 
X 
X 
X 
X 

X 

X 
X 
X 

X 

0 

0 

X 
X 
X 
X 
X 

X 

X 
X 
X 

X 

0 

0 

membership function pA;, is given by 

PLA;(U) = SUP m i n { P A ( U ) P B ( v ) , 1 - P ~ 5 ( V ) }  

2 P A ( U )  

V € V  

- 2 P A U )  + 1 - 4- 
- 

{B’= B): The values of S,(pB(v) )  with a parameter 
pA(u), say pA(u) = 0.3 and 0.8, are indicated in Fig. 9 by a 
broken line and dotted line, respectively. The member- 
ship function pA; is given by 

P A ; W  = SUP I P A ( U ) P B ( V ) ? P B ( V ) l  
V € V  

= P A ( U ) .  

The remaining consequences [24] inferred by R,, R,, 
R,,R,,R,,R, can be obtained by the same method as 
just described. The results are summarized in Tables I11 
and IV. 

By employing the intuitive criteria in Tables I and I1 in 
Tables 111 and IV, we can determine how well a fuzzy 
implication function satisfies them. This information is 
summarized in Table V. 

In FLC applications, a control action is determined by 
the observed inputs and the control rules, without the 

consequent of one rule serving as the antecedent of 
another. In effect, the FLC functions as a one-level for- 
ward data-driven inference (GMP). Thus the backward 
goal-driven inference (GMT), chaining inference mecha- 
nisms (syllogisms), and contraposition do not play a role 
in the FLC, since there is no need to infer a fuzzy control 
action through the use of these inference mechanisms. 

Although R ,  and R,  do not have a well-defined logical 
structure, the results tabulated in Table V indicate that 
they are well suited for approximate reasoning, especially 
for the generalized modus ponens. 

R,  has a logical structure which is similar to R,. R ,  is 
based on the implication rule in Lukasiewicz’s logic LAleph. 
However, R,  and R,  are not well suited for approximate 
reasoning since the inferred consequences do not always 
fit our intuition. Furthermore, for multiple-valued logical 
systems, R,  and R A  have significant shortcomings. Over- 
all, R, yields reasonable results and thus constitutes an 
appropriate choice for use in approximate reasoning. 

B. Interpretation of Sentence Connectives “and, also ’’ 

In most of the existing FLC’s, the sentence connective 
“and” is usually implemented as a fuzzy conjunction in a 
Cartesian product space in which the underlying variables 



take values in different universes of discourse. As an 
illustration, in “ i f  ( A  and B )  then C,” the antecedent is 
interpreted as a fuzzy set in the product space U X V ,  
with the membership function given by 

PA X B (  U ,  .> = min { P A ( U )  ? P A  41 
or 

PA x n (  U 2 v )  = PA( U 1 . P A  v 1 
where U and V are the universes of discourse associated 
with A and B ,  respectively. 

When a fuzzy system is characterized by a set of fuzzy 
control rules, the ordering of the rules is immaterial. This 
necessitates that the sentence connective “also” should 
have the properties of commutativity and associativity 
(see sections 111-A and 111-C in Part I and Part D in this 
section). In this connection, it should be noted that the 
operators in triangular norms and co-norms possess these 
properties and thus qualify as the candidates for the 
interpretation of the connective “also.” In general, we use 
the triangular co-norms in association with fuzzy conjunc- 
tion and disjunction, and the triangular norms in associa- 
tion with fuzzy implication. The experimental results 
[52]-[54], [96], [731 and the theoretical studies [181, [851, 
[116], [191 relate to this issue. 

Kiszka et al. [52] described a preliminary investigation 
of the fuzzy implication functions and the sentence con- 
nective “also” in the context of the fuzzy model of a dc 
series motor. In later work, they presented additional 
results for fuzzy implication functions and the connective 
“also” in terms of the union and intersection operators 
[SI ,  [MI. 

Our investigation leads to some preliminary conclu- 
sions. First, the connective “also” has a substantial influ- 
ence on the quality of a fuzzy model, as we might expect. 
Fuzzy implication functions such as R,, RA,  and R, with 
the connective “also” defined as the union operator, and 
R c ,  R,, R,,, and R,,, defined as the intersection, yield 
satisfactory results. These fuzzy implication functions dif- 
fer in the number of mathematical operations which are 
needed for computer implementation. 

Recently, Stachowicz and Kochanska [96] studied the 
characteristics of 38 types of fuzzy implication along with 
nine different interpretations (in terms of triangular norms 
and co-norms) of the connective “also,” based on various 
forms of the operational curve of a series motor. Based 
on their results, we tabulate in Table VI a summary of the 
most appropriate pairs for the FLC of the fuzzy implica- 
tion function and the connective “also.” 

Additional results relating to the interpretation of the 
connective “also” as the union and the intersection are 
reported in [73]. The investigation in question is based on 
a plant model with first-order delay. It is established that 
the fuzzy implication functions R c ,  R,, Rhp ,  R,, with the 
connective “also” as the union operator yield the best 
control results. Furthermore, the fuzzy implications R, 
and R, are not well suited for control applications even 

TABLE VI 
SLJlTAH1.F PAIRS OF A F(JZZY IMP1 I(ATI0N FUNCTION 

A N D  CONNECTIVE “LllSO” 

Implication Rule Connective Also 

“ I t  depends on the shape of reproduced curve which forms the set of 
fuzzy control rules. 

though they yield reasonably good results in approximate 
reasoning. 

From a practical point of view, the computational as- 
pects of an FLC require a simplification of the fuzzy 
control algorithm. In this perspective, Mamdani’s R, and 
Larsen’s R, with the connective “also” as the union 
operator appear to be better suited for constructing fuzzy 
models than the other methods in FLC applications. We 
will have more to say about these methods at a later 
point. 

C. Compositional Operators 

In a general form, a compositional operator may be 
expressed as the sup-star composition, where “star” de- 
notes an operator-e.g., min, product, etc.-which is 
chosen to fit a specific application. In the literature, four 
kinds of compositional operators can be used in the 
compositional rule of inference, namely: 

sup-min operation [Zadeh, 19731, 
sup-product operation [Kaufmann, 19751, 
sup-bounded-product operation [Mizumoto, 19811, 
sup-drastic-product operation [Mizumoto, 19811. 

In FLC applications, the sup-min and sup-product 
compositional operators are the most frequently used. 
The reason is obvious, when the computational aspects of 
an FLC are considered. However, interesting results can 
be obtained if we apply the sup-product, sup-bounded- 
product, and sup-drastic-product operations with differ- 
ent fuzzy implication functions in approximate reasoning 
[70], [72]. The inferred results employing these composi- 
tional operators are better than those employing the 
sup-min operator. Further investigation of these issues in 
the context of the accuracy of fuzzy models may provide 
interesting results. 

D. Inference Mechanisms 

The inference mechanisms employed in an FLC are 
generally much simpler than those used in a typical expert 
system, since in an FLC the consequent of a rule is not 
applied to the antecedent of another. In other words, in 
FLC we do not employ the chaining inference mecha- 
nism, since the control actions are based on one-level 
forward data-driven inference (GMP). 

The rule base of an FLC is usually derived from expert 
knowledge. Typically, the rule base has the form of a 
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MIMO system 

R = { R L I M O ,  R h I M O , ’  ‘ - 9  R“,MO} 

where R‘,,,, represents the rule: if ( x  is A; a n d . . . ,  
and y is B;)  then (z, is C;; . ., zq is 0;). The antecedent 
of R,,,, forms a fuzzy set A; x - x E; in the product 
space U X . . . X V. The consequent is the union of q 
independent control actions. Thus the ith rule R‘,,,, 
may be represented as a fuzzy implication 

R‘,,,,: ( A i  X . . . X B ; )  -+ ( Z, + . . . + z q )  

from which it follows that the rule base R may be repre- 
sented as the union 

= {  ij [ ( A ; x  . . .  X B ; ) - + ( z , +  * * *  + z q , ] }  

= {  ij [ ( A ; x  . . .  X B ; ) - + z , ) ] ,  

ij [ ( A ; x  . . .  x B ; ) - + z q ) ] }  

i =  1 

i = l  
n 

. U [ ( A ; x  . . .  X B ; )  + z 2 ) ] ; - ,  
i =  I 

i = l  

= {  U U [ (A ;X  * * *  x B ; ) + z x ) ] )  
k = l  i = l  

= { ~ L I I S O  7 R G 4 1 S O  ,. * . , RB&ISOJ. 

In effect, the rule base R of an FLC is composed of a set 
of sub-rule-bases RBL,,,, with each sub-rule-base 
RBL,,, consisting of n fuzzy control rules with multiple 
process state variables and a single control variable. The 
general rule structure of a MIMO fuzzy system can there- 
fore be represented as a collection of MISO fuzzy sys- 
tems: 

R = I ~ ~ I , , ~  w41so 9 * * , Wl1so) 

where RB;,,, represents the rule: if ( x  is A;  a n d . .  . , 
and y is B i )  then ( 2 ,  is D;), i = 1,2; . *, n. 

Let us consider the following general form of MISO 
fuzzy control rules in the case of two-input/single-output 
fuzzy systems: 

input: 
R I :  

also R,: 

x is A’ and y is B’ 
if x is A ,  and y is B ,  then z is C, 
if x is A, and y is B, then z is C, 

. . .  

. . .  
also R,: if x is A, and y is B, then z is C, 

z is C’ 

where x ,  y, and z are linguistic variables representing the 

process state variables and the control variable, respec- 
tively; A, ,  B,, and C, are linguistic values of the linguistic 
variables x ,  y, and z in the universes of discourse U, V ,  
and W, respectively, with i = 1,2; a ,  n. 

The fuzzy control rule “if ( x  is A, and y is B, )  then (z 
is C,))’ is implemented as a fuzzy implication (relation) R, 
and is defined as 

P R ,  ~ P - ( A , d n d B , ~ C , ) ( U , V , W )  

= [ P A , ( U )  and PB,(V)] + P C , ( W )  

where “ A ,  and B,” is a fuzzy set A,  X B, in U X K 
R, ( A ,  and B, )  -+ C, is a fuzzy implication (relation) in 
U x V x W7 and -+ denotes a fuzzy implication function. 

The consequence C’ is deduced from the sup-star 
compositional rule of inference employing the definitions 
of a fuzzy implication function and the connectives “and” 
and “also.” 

In what follows, we shall consider some useful proper- 
ties of the FLC inference mechanism. First, we would like 
to show that the sup-min operator denoted by 0 and the 
connective “also” as the union operator are commutative. 
Thus the fuzzy control action inferred from the complete 
set of fuzzy control rules is equivalent to the aggregated 
result derived from individual control rules. Furthermore, 
as will be shown later, the same properties are possessed 
by the sup-product operator. However, the conclusion in 
question does not apply when the fuzzy implication is 
used in its traditional logical sense [lS], [19]. More specifi- 
cally, we have 

Lemma I: (A‘ ,  B’)  0 U := , R I  = U := ,(A‘, B’)  0 R I .  

Proofi 
n 

C ’ = ( A ’ , B ’ ) o  U R,  
r = l  

n 

= ( A ‘ ,  B ’ )  0 U ( A ,  and B, -+ C,). 

The membership function pc. of the fuzzy set C’ is 

r = l  

pointwise defined for all w E W by 

Pc,( W )  = ( P A ’ W  > P B 4  V I )  0 max ( P R f 4  v ,  w )  1 

u , v , w  

.PRJU,v,w) , .  . . ,PR,,(U,V,W)) 

= SUP min ( (PA4  U )  9 Pus-( v )  1 7  max (PR f U , v , w ) 7 

= SUP max (min [(PA~(”),PB~(v)),c~~U,v,w)] 7 

. . . ,min [ (PA,< U )  9 P B ’ (  v)), PR,{ U ?  v ,  w I ]  } 
= max { [ ( P A ’ ( 4  ,PB’( 4)” P R f U 9  V d ]  7 

. . . 3 [ ( P A ’ ( 4 P B ’ ( V ) ) O  PR, , (U ,v ,w)]} .  

u , v  u , v , w  

.PRJ U , v7 w )  9 .  . . 7 PR,( U , v ,  w))} 

u , v  [(,V,W 

K,V,W 
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Therefore 

C'= [ ( A ' ,  B ' ) .  RI] U [ ( A ' , B ' ) o  R,] 

U [ ( A' ,  B ' )  0 R,,] .U  . . .  
n 

= U ( A ' ,  B')  0 R, 
, = I  

n 
= U ( A ' , B ' ) o ( A ,  and B,-+C,)  

/ = I  

n 
U c/f. 

, = I  

Lemma 2: For the fuzzy conjunctions R,, R,, R,,, and 
R,,, we have 

( A ' ,  B')  0 ( A, and B, -+ C,) 

= [ A ' ~ ( A , - + C , ) ] ~ [ B ' O ( ~ , - + C , ) ]  
if P A , X B ,  = PA, A PB, 

( A ' ,  B ' )  0 ( A ,  and B, -+ C,)  

= [A ' . (  A ,  -+ C,)]  [ B ' . ( B ,  -+ C,)] 

if P A , X B ,  PA,'PB,. 

Proofi 

C ; = ( A ' , B ' ) o ( A ,  and B,-+C,) 

c ~ c ; = ( l ~ A , , ~ B , ) o ( l l A , x B ,  - + P c , )  

= (PA' ,  PB' )  (min ( P A ,  7 P B , )  -+ PC,)  

= ( PA', PB' )  min [ ( PA, PC, ) ? ( PB, -+ PC, I ]  
= sup min { [ ( P A , ,  P B . )  

u , v  

' m i n [ ( P A , - + P C , ) ~ ( P B , - + ) l C , ) ] }  

= supmin {min [ P ~ , ~  ( P A ,  -+ c lC,>] ,  
u , v  

. min [ PB,? ( PB, -+ Pc, I ]  1 
=min{[ PA"(PA,  -+ P C , ) ] ?  [ I * B " ( P B ,  -3 P C , ) ] } .  

Hence we obtain 

C; = [ A ' .  ( A ,  -+ C,)] n [ B'o( B, -+ C,)]  . Q.E.D. 

Let us consider two special cases that follow from the 
preceding lemma and that play an important role in FLC 
applications. 

Lemma 3: If the inputs are fuzzy singletons, namely, 
A'= U(), B ' =  vo, then the results dervied by employing 
Mamdani's minimum operation rule R ,  and Larsen's 
product operation rule R,, respectively, may be expressed 
simply as 

R, :  %*A P C , ( W )  

As will be seen in following section, the last lemma not 
only simplifies the process of computation but also pro- 
vides a graphic interpretation of the fuzzy inference 
mechanism in the FLC. Turning to the sup-product oper- 
ator, which is denoted as -, we have the following. 

n n 

Lemma 2': ( A ' , B ' ) *  U R j =  U (A ' ,B ' )*R j .  

Lemma 2': For the fuzzy conjunctions R, ,  R,, R,,, 
i - 1  i = l  

and R,,, we have 
( A ' ,  B')  - ( A ,  and B, -+ C,) 

= [A ' . (  A ,  -+ c,)] n [ B' .( B, -+ c,)] 
if ~ A , x e ,  = PA, A PB, 

( A ' ,  B ' )  . ( A ,  and B, -+ C,) 

= [ A ' * (  A ,  + C,)] . [ B'*(  B, -+ C, ) ]  

if P A , ~ B , =  PA,*PB;  

Lemma 3: If the inputs are fuzzy singletons, namely, 
A'= U(), B ' =  vO, then the results derived by employing 
Mamdani's minimum operation rule R ,  and Larsen's 
product operation rule R,, respectively, may be expressed 
simply as 

R,: f f r / \ A P C , ( W )  R,: ff;A Pc,(W) 

R,: ff,"~PCLc,(W) R,: f f , .*PC,(W)  
2) 1) 

where a," = p A , ( ~ ( ) ) A  pS, (vo)  and a;= EI.A,(U()).PB,(VO). 

Therefore we can assert that 
n 

R,: Pes= U a, A Pc, 
, = I  
n 

R,: Pea= U f f , . P C ,  
, = I  

where the weighting factor (firing strength) a; is a mea- 
sure of the contribution of the ith rule to the fuzzy 
control action. The weighting factor in question may be 
determined by two methods. The first uses the minimum 
operation in the Cartesian product, which is widely used 
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Fig. 10. Graphical interpretation of Lemma 2 under a A and R c .  

Fig. 1 1 .  Graphical interpretation of Lemma 2 under a’ and R,,. 

in FLC applications. The second employs the algebraic 
product in the Cartesian product, thus preserving the 
contribution of each input variable rather than the domi- 
nant one only. In this respect, it appears to be a reason- 
able choice in many FLC applications. 

For simplicity, assume that we have two fuzzy control 
rules, as follows: 

R I :  

R,: 

if x is A ,  and y is B ,  then z is C , ,  

if x is A ,  and y is B ,  then z is C , .  

Fig. 10 illustrates a graphic interpretation of Lemma 2 
under R,  and a:. Fig. 11 shows a graphic interpretation 
of Lemma 2 under R,  and a:. 

In on-line processes, the states of a control system play 
an essential role in control actions. The inputs are usually 
measured by sensors and are crisp. In some cases it may 
be expedient to convert the input data into fuzzy sets. In 
general, however, a crisp value may be treated as a fuzzy 
singleton. Then the firing strengths a, and a, of the first 

and second rules may be expressed as 

= P A I ( X , ) )  A PB,(YO) 

a2 = P A 2 ( X O )  A PBZ(Y0) 

where k A , ( x O )  and p B f y o )  play the role of the degrees of 
partial match between the user-supplied data and the 
data in the rule base. These relations play a central role 
in the four types of fuzzy reasoning currently employed in 
FLC applications, and are described in the following. 

Fuzzy Reasoning of the First Type - Mamdani’s Min- 
imum Operation Rule as a Fuzzy Implication Function: 
Fuzzy reasoning of the first type is associated with the use 
of Mamdani’s minimum operation rule R, as a fuzzy 
implication function. In this mode of reasoning, the ith 
rule leads to the control decision 

I )  

P C , W  = “ r  A Pc,(W) 

which implies that the membership function (U, of the 
inferred consequence C is pointwise given by 

C L A W )  = l l c ;  v Pc;  

= [ “ I  APCI (W) ]V [LYZAPCZ(W) ] .  
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Fig. 12. Diagrammatic representation of fuzzy reasoning 1 
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Fig. 13. Diagrammatic representation of fuzzy reasoning 2. 

To obtain a deterministic control action, a defuzzifica- 
tion strategy is required, as will be discussed at a later 
point. The fuzzy reasoning process is illustrated in Fig. 12, 
which shows a graphic interpretation of Lemma 3 in 
terms of Mamdani's method R,.  

2) Fuzzy Reasoning of the Second Type- Larsen's 
Product Operation Rule as a Fuzzy Implication Function: 
Fuzzy reasoning of the second type is based on the use of 
Larsen's product operation rule R,  as a fuzzy implication 
function. In this case, the ith rule leads to the control 
decision 

P ~ : ( w )  = a i * P c , ( w ) -  

Consequently, the membership function pc of the in- 
ferred consequence C is pointwise given by 

P C ( W )  = Pc;  v Pc; 

= [ a , * P c , ( W ) ]  v [ %.PC, (W)] .  

From C ,  a crisp control action can be deduced through 
the use of a defuzzification operator. The fuzzy reasoning 

process is illustrated in Fig. 13, which shows a graphic 
interpretation of Lemma 3 in terms of Larsen's meth- 
od R,. 

3) Fuzzy Reasoning of the Third Type - Tsukamoto's 
Method with Linguistic Terms as Monotonic Membership 
Functions: This method was proposed by Tsukamoto [1171. 
It is a simplified method based on the fuzzy reasoning of 
the first type in which the membership functions of fuzzy 
sets A , ,  B,, and C, are monotonic. However, in our 
derivation, A ,  and B, are not required to be monotonic 
but C, is. 

In Tsukamoto's method, the result inferred from the 
first rule is a ,  such that a I  = C , ( y , ) .  The result inferred 
from the second rule is a2 such that a2 = C,(y2) .  Corre- 
spondingly, a crisp control action may be expressed as the 
weighted combination (Fig. 14) 

aIYl+ % Y 2  
20 = 

+ a2 

Fuzzy Reasoning of the Fourth Type-The Conse- 
quence of a Rule is a Function of Input Linguistic Variables: 
Fuzzy reasoning of the fourth type employs a modified 

4)  
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Fig. 14. Diagrammatic representation of fuzzy reasoning 3. 

version of state evaluation function. In this mode of 
reasoning, the ith fuzzy control rule is of the form 

RI :  i f ( x i s  A , ; . .  a n d y i s  B , ) t h e n z = f , ( x ; . . , y )  

where x ,  . . . , y, and z are linguistic variables represent- 
ing process state variables and the control variable, re- 
spectively; A , ,  . . . , B, are linguistic values of the linguistic 
variables x ,  * * e ,  y in the universes of discourse U , .  . . , V ,  
respectively, with i = 1,2,. . -, n ;  and f, is a function of the 
process state variables x , .  . . , y defined in the input sub- 
spaces. 

For simplicity, assume that we have two fuzzy control 
rules as follows: 

R I :  if x is A ,  and y is B, then z = f l ( x , y )  

R , :  if x is A ,  and y is B, then z = f2( x , y ) .  
The inferred value of the control action from the first rule 
is al  fl(xo,yo). The inferred value of the control action 
from the second rule is a2 f,<x,,, yo). Correspondingly, a 
crisp control action is given by 

f I( xo , Yo 1 + u*f2( xo 9 Yo) 
+ ff2 

Z" = 

This method was proposed by Takagi and Sugeno [lo31 
and has been applied to guide a model car smoothly along 
a crank-shaped track [98] and to park a car in a garage 
[971, P91. 

11. DEFUZZIFICATION STRATEGIES 

Basically, defuzzification is a mapping from a space of 
fuzzy control actions defined over an output universe of 
discourse into a space of nonfuzzy (crisp) control actions. 
It is employed because in many practical applications a 
crisp control action is required. 

A defuzzification strategy is aimed at producing a non- 
fuzzy control action that best represents the possibility 
distribution of an inferred fuzzy control action. Unfortu- 
nately, there is no systematic procedure for choosing a 
defuzzification strategy. Zadeh 11421 first pointed out this 
problem and made tentative suggestions for dealing with 

it. At present, the commonly used strategies may be 
described as the max criterion, the mean of maximum, 
and the center of area. 

A. The mar criterion method 

The max criterion produces the point at which the 
possibility distribution of the control action reaches a 
maximum value. 

B. The Mean of Maximum Method (MOM) 

The MOM strategy generates a control action which 
represents the mean value of all local control actions 
whose membership functions reach the maximum. More 
specifically, in the case of a discrete universe, the control 
action may be expressed as 

I w  
Z() = c 2 

] = I  1 

where wI is the support value at which the membership 
function reaches the maximum value pz(wl) ,  and 1 is the 
number of such support values. 

C. The Center of Area Method (COA) 

The widely used COA strategy generates the center of 
gravity of the possibility distribution of a control action. 
In the case of a discrete universe, this method yields 

n c c L Z ( W I ) * W l  

c P A W ] )  

/ = I  
20 = n 

] = I  

where n is the number of quantization levels of the 
output. 

Fig. 15 shows a graphical interpretation of various 
defuzzification strategies. Braae and Rutherford [5] pre- 
sented a detailed analysis of various defuzzification 
strategies (COA, MOM) and concluded that the COA 
strategy yields superior results (also see [58]). However, 
the MOM strategy yields a better transient performance 
while the COA strategy yields a better steady-state per- 
formance [94]. It should be noted that when the MOM 
strategy is used, the performance of an FLC is similar to 
that of a multilevel relay system [48], while the COA 
strategy yields results which are similar to those obtain- 
able with a conventional PI controller [46]. An FLC based 
on the COA generally yields a lower mean square error 
than that based on the MOM [ l l l ] .  Furthermore, the 
MOM strategy yields a better performance than the Max 
criterion strategy [521. 

111. APPLICATIONS AND RECENT DEVELOPMENTS 

A.  Applications 

During the past several years, fuzzy logic has found 
numerous applications in fields ranging from finance to 
earthquake engineering [62]. In particular, fuzzy control 
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Fig. 15. Diagrammatic representation of various defuzzification strate - 
gies. 

has emerged as one of the most active and fruitful areas 
for research in the application of fuzzy set theory. In 
many applications, the FLC-based systems have proved to 
be superior in performance to conventional systems. 

Notable applications of FLC include the heat exchange 
[80], warm water process [47], activated sludge process 
[113], [35], traffic junction [82], cement kiln [59], [118], 
aircraft flight control [ S I ,  turning process [92], robot 
control [1191, [941, [1061, [SI, [34], model-car parking and 
turning [971-[991, automobile speed control [74], [751, wa- 
ter purification process [127], elevator control [23], auto- 
mobile transmission control [40], power systems and nu- 
clear reactor control [4], [511, fuzzy memory devices [107], 
[108], [120], [1281, [1291, [133], and the fuzzy computer 
[132]. In this connection, it should be noted that the first 
successful industrial application of the FLC was the ce- 
ment kiln control system developed by the Danish cement 
plant manufacturer F. L. Smidth in 1979. An ingenious 
application is Sugeno’s fuzzy car, which has the capability 
of learning from examples. More recently, predictive fuzzy 
control systems have been proposed and successfully ap- 
plied to automatic train operation systems and automatic 
container crane operation systems [135]-[139]. In parallel 
with these developments, a great deal of progress has 
been made in the design of fuzzy hardware and its use in 
so-called fuzzy computers [132]. 

B. Recent Developments 
Sugeno’s Fuzzy Car: One of the most interesting 

applications of the FLC is the fuzzy car designed by 
Sugeno. Sugeno’s car has successfully followed a crank- 
shaped track and parked itself in a garage [98]-[991. 

The control policy incorporated in Sugeno’s car is rep- 
resented by a set of fuzzy control rules which have the 
form: 

R I :  

1) 

if x is A , ,  . . . and y is B, then 

z = a;, + a i x  + . . . + a i y  

where x;  . ., and y are linguistic variables representing 
the distances and orientation in relation to the bound- 
aries of the track; A , ;  . ., and B, are linguistic values of 
x;  . ., and y ;  z is the value of the control variable of the 
ith control rule; and a;,; * ,  and a; are the parameters 
entering in the identification algorithm [ 1031, [99]. 

The inference mechanism of Sugeno’s fuzzy car is based 
on fuzzy reasoning of the fourth type, with the parameters 

Angle 
N L  NM NS ZR PS PM PL 

N L  
NM 

Change NS NS ZR 
of Z R  NM Z R  PM 

Angle PS Z R  PS 
PM 
PL 

a:,; . ., and a:, identified by training. The training process 
involves a skilled operator who guides the fuzzy model car 
under different conditions. In this way, Sugeno’s car has 
the capability of learning from examples. 

FLC Hardware Systems: A higher-speed FLC hard- 
ware system employing fuzzy reasoning of the first type 
has been proposed by Yamakawa [130], 11311. It is com- 
posed of 15 control rule boards and an action interface 
(i.e., a defuzzifier based on the COA). It can handle fuzzy 
linguistic rules labeled as NL, N M ,  NS, Z R ,  PS,  P M ,  PL. 
The operational speed is approximately 10 mega fuzzy 
logical inferences per second (FLIPS). 

The FLC hardware system has been tested by an appli- 
cation to the stabilization of inverted pendulums mounted 
on a vehicle. Two pendulums with different parameters 
were controlled by the same set of fuzzy control rules 
(Table VII). It is worthy of note that only seven fuzzy 
control rules achieve this result. Each control rule board 
and action interface has been integrated to a 40-pin chip. 

3) Fuzzy Automatic Train Operation (A TO) Systems: 
Hitachi Ltd. has developed a fuzzy automatic train opera- 
tion system (ATO) which has been in use in the Sendai- 
City subway system in Japan since July 1987. In this 
system, an object evaluation fuzzy controller predicts the 
performance of each candidate control command and 
selects the most likely control command based on a skilled 
human operator’s experience. 

More specifically, fuzzy A T 0  comprises two rule bases 
which evaluate two major functions of a skilled operator 
based on the criteria of safety, riding comfort, stop-gap 
accuracy, traceability of target velocity, energy consump- 
tion, and running time. One is constant-speed control 
(CSC), which starts a train and maintains a prescribed 
speed. The other is the train automatic stop control 
(TASC), which regulates a train speed in order to stop at 
the target position at a station. Each rule base consists of 
twelve object-evaluation fuzzy control rules. The an- 
tecedent of every control rule performs the evaluation of 
train operation based on safety, riding comfort, stop-gap 
accuracy, etc. The consequent determines the control 
action to be taken based on the degree of satisfaction of 
each criterion. The control action is the value of the train 
control notch, which is evaluated every 100 ms from the 
maximal evaluation of each candidate control action, and 
it takes as a value a discrete number; positive value means 
“power notch,” negative value means “break notch.” 

2) 
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The Sendai-City subway system has been demonstrated 
to be superior in performance to the conventional PID 
A T 0  in riding comfort, stop gap accuracy, energy con- 
sumption, running time, and robustness [1351, [1361, [1391. 

Fuzzy Automatic Container Crane Operation (ACO) 
Systems: In the application of FLC to the automatic oper- 
ation of container-ship loading cranes, the principal per- 
formance criteria are safety, stop-gap accuracy, container 
sway, and carrying time. 

Fuzzy ACO involves two major operations: the trolley 
operation and the wire rope operation. Each operation 
comprises two function levels: a decision level and an 
activation level. Field tests of fuzzy ACO systems with 
real container cranes have been performed at the port of 
Kitakyusyu in Japan. The experimental results show that 
cargo handling ability of Fuzzy ACO by an unskilled 
operator is more than 30 containers per hour, which is 
comparable to the performance of a veteran operator. 
The tests have established that the fuzzy ACO controller 
has the capability of operating a crane as safely, accu- 
rately, and skillfully as a highly experienced human opera- 
tor [ 1371-[ 1391. 

Fuzzy Logic Chips and Fuzzy Computers: The first 
fuzzy logic chip was designed by Togai and Watanabe at 
AT&T Bell Laboratories in 1985 [107]. The fuzzy infer- 
ence chip, which can process 16 rules in parallel, consists 
of four major parts: a rule-set memory, an inference- 
processing unit, a controller, and an input-output cir- 
cuitry. Recently, the rule-set memory has been imple- 
mented by a static random access memory (SRAM) to 
realize a capability for dynamic changes in the rule set. 
The inference-processing unit is based on the sup-min 
compositional rule of inference. Preliminary timing tests 
indicate that the chip can perform approximately 250000 
FLIPS at 16-MHz clock. A fuzzy logic accelerator (FLA) 
based on this chip is currently under development [l08], 
[ 1201. Furthermore, in March 1989 the Microelectronics 
Center of North Carolina successfully completed the fab- 
rication of the world’s fastest fuzzy logic chip, designed by 
Watanabe. The full-custom chip comprises 688 000 tran- 
sistors and is capable of making 580000 FLIPS. 

In Japan, Yamakawa and Miki realized nine basic fuzzy 
logic functions by the standard CMOS process in 
current-mode circuit systems [ 1281. Later, a rudimentary 
concept of a fuzzy computer was proposed by Yamakawa 
and built by OMRON Tateishi Electric Co. Ltd [132]. The 
Yamakawa-OMRON computer comprises a fuzzy mem- 
ory, a set of inference engines, a MAX block, a defuzzi- 
fier, and a control unit. The fuzzy memory stores lin- 
guistic fuzzy information in the form of membership 
functions. It has a binary RAM, a register, and a member- 
ship function generator [128]. A membership function 
generator (MFG) consists of a PROM, a pass transistor 
array, and a decoder. Every term in a term set is repre- 
sented by a binary code and stored in a binary RAM. The 
corresponding membership functions are generated by 
the MFG via these binary codes. The inference engine 

4) 

5) 

employs MAX and MIN operations, which are imple- 
mented by the emitter coupled fuzzy logic gates (ECFL 
gates) in voltage-mode circuit systems. The linguistic in- 
puts, which are represented by analog voltages distributed 
on data buses, are fed into each inference engine in 
parallel. The results inferred from the rules are aggre- 
gated by a MAX block, which implements the function of 
the connective “also” as a union operation, yielding a 
consequence which is a set of analog voltages distributed 
on output lines. In the FLC applications, a crisp control 
command necessitates an auxiliary defuzzifier. In this 
implementation, a fuzzy computer is capable of process- 
ing fuzzy information at the very high speed of approxi- 
mately 10 mega-FLIPS. It is indeed an important step not 
only in industrial applications but also in common-sense 
knowledge processing. 

IV. FUTURE STUDIES A N D  PROBLEMS 

In many of its applications, FLC is either designed by 
domain experts or in close collaboration with domain 
experts. Knowledge acquisition in FLC applications plays 
an important role in determining the level of performance 
of a fuzzy control system. However, domain experts and 
skilled operators do not structure their decisionmaking in 
any formal way. As a result, the process of transferring 
expert knowledge into a usable knowledge base of an 
FLC is time-consuming and nontrivial. Although fuzzy 
logic provides an effective tool for linguistic knowledge 
representation and Zadeh’s compositional rule of infer- 
ence serves as a useful guideline, we are still in need of 
more efficient and more systematic methods for knowl- 
edge acquisition. 

An FLC based on the fuzzy model of a process is 
needed when higher accuracy and reliability are required. 
However, the fuzzy modeling of a process is still not well 
understood due to difficulties in modeling the linguistic 
structure of a process and obtaining operating data in 
industrial process control [131, [841, [llll ,  [1251, 11041, 
[loll.  

Classical control theory has been well developed and 
provides an effective tool for mathematical system analy- 
sis and design when a precise model of a system is 
available. In a complementary way, FLC has found many 
practical applications as a means of replacing a skilled 
human operator. For further advances, what is needed at 
this juncture are well-founded procedures for system de- 
sign. In response to this need, many researchers are 
engaged in the development of a theory of fuzzy dynamic 
systems which extends the fundamental notions of state 
161, controllability [311, and stability [771, [441, 1891, [ S I .  

Another direction of recent exploration is the concep- 
tion and design of fuzzy systems that have the capability 
to learn from experience. In this area, a combination of 
techniques drawn from both fuzzy logic and neural net- 
work theory may provide a powerful tool for the design of 
systems which can emulate the remarkable human ability 
to learn and adapt to changes in environment. 
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