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Introduction

• Let G = (V ,E ) be a simple directed graph. (i.e. There are no

loops and in one direction there is at most one edge connecting a

pair of vertices.)

• Let V be written {1, . . . , n}.

• (i , j) ∈ E if there is a directed edge from vertex i to vertex j .



Adjacency matrix in a digraph

• Define

aij :=

1 (i , j) ∈ E

0 otherwise.

• A := [aij ] is the adjacency matrix of G .

Example

A directed graph and its adjacency matrix.

3

1

2

A =


0 1 1

0 0 1

0 0 0

 .



Laplacian matrix

• The Laplacian of G is defined by L := Diag(A1)− A.

Example

A directed graph and its Laplacian matrix.

3

1

2

L =


2 −1 −1

0 1 −1

0 0 0

 .



Properties of the Laplacian

• If L is the Laplacian matrix of a directed graph, then

I L need not be symmetric.

I All off-diagonal entries of L are non-positive.

I L1 = 0 (i.e. Row sums are equal to 0)

I L′1 need not be 0. (i.e. Column sums need not be 0).

I rank(L) need not be n − 1.



Strongly connected digraph

• A directed graph G is strongly connected, if each pair of

vertices is connected by a directed path.

Example

1 2

34

1 2

34

• For a strongly connected graph G , rank(L) = n − 1.



Balanced digraphs

I Indegree of vertex i is the total number of edges coming into

i . (=
∑

j aji = (A′1)i ).

I Outdegree of vertex i is the total number of edges going out

of i . (=
∑

j aij = (A1)i ).

I Vertex i is balanced, if

Indegree of i = Outdegree of i .

I Digraph G is balanced if all the vertices are balanced.



Balanced digraphs

Example

A balanced digraph

1 2

3

45

6

Indegree/Outdegree of vertices 1, 3, 4 and 6 = 1.

Indegree/Outdegree of vertex 2 = 3.

Indegree/Outdegree of vertex 5 = 2.



Balanced digraph

Example

The adjacency and Laplacian matrices of G are:

A =



0 1 0 0 0 0

0 0 1 1 1 0

0 1 0 0 0 0

0 0 0 0 1 0

0 1 0 0 0 1

1 0 0 0 0 0


and L =



1 −1 0 0 0 0

0 3 −1 −1 −1 0

0 −1 1 0 0 0

0 0 0 1 −1 0

0 −1 0 0 2 −1

−1 0 0 0 0 1


.

• For a balanced graph G , L′1 = 0.



Resistance

• Let J := 11′.

We define the resistance in digraphs.

Definition (Resistance)

The resistance between any two vertices i and j in V is defined by

rij := l†ii + l†jj − 2l†ij ,

where l†ij is the (i , j)th entry in the Moore-Penrose inverse of L.

• R := [rij ] is called the resistance matrix of G .



Resistance matrix

Example

The directed graph G is strongly connected and balanced.

1 2

3

45

6



Resistance matrix

Example

The Moore-Penrose inverse of L is:

L† =



5
9

1
18 − 1

9 − 1
9 − 1

9 − 5
18

− 5
18

2
9

1
18

1
18

1
18 − 1

9

− 4
9

1
18

8
9 − 1

9 − 1
9 − 5

18

− 7
36 − 7

36 − 13
36

23
36

5
36 − 1

36

− 1
36 − 1

36 − 7
36 − 7

36
11
36

5
36

7
18 − 1

9 − 5
18 − 5

18 − 5
18

5
9


.



Resistance matrix

Example

The resistance matrix is:

R = [rij ] = [l†ii + l†jj − 2l†ij ] =



0 2
3

5
3

17
12

13
12

5
3

4
3 0 1 3

4
5

12 1

7
3 1 0 7

4
17
12 2

19
12

5
4

9
4 0 2

3
5
4

11
12

7
12

19
12

4
3 0 7

12

1
3 1 2 7

4
17
12 0


.



Properties of the resistance

Let G = (V ,E ) be a simple, strongly connected and balanced

directed graph with vertex set V = {1, . . . , n} and edge set E . If

R := [rij ] is the resistance matrix of G , then

Theorem (R.Balaji, R. B. Bapat and Shivani Goel. Resistance

matrices of balanced directed graphs, Linear and Multilinear

Algebra,(2020).)

(A) rij = 0 iff i = j .

(B) rij ≥ 0

i.e. Resistance distance is non-negative.

(C) For i , j , k ∈ V , rij ≤ rik + rkj

i.e. Resistance distance satisfies triangle inequality.



Distance matrix

• For each distinct pair of vertices i and j in V , let dij be the

length of the shortest directed path from i to j and define dii := 0.

• The non-negative real number dij is the classical distance

between i and j .

• By numerical experiments, we noted that the inequality rij ≤ dij

always holds.



Example

Consider the graph below.

3 2

5

14

Figure: A strongly connected and balanced digraph on 5 vertices.



Example

The resistance and distance matrices of G are:

R = [rij ] =



0 16
35

18
35

27
35

44
35

24
35 0 22

35
3
5

4
5

32
35

18
35 0 19

35
46
35

23
35

19
35

31
35 0 47

35

26
35

6
5

44
35

53
35 0


and D =



0 1 1 2 2

2 0 1 1 1

2 1 0 1 2

1 1 2 0 2

1 2 2 3 0


.

It is easily seen that rij ≤ dij for each i , j .



• Given a general strongly connected and balanced digraph, we do

not know how to prove the above inequality.

• In this talk, when G is a directed cactus graph, we discuss a

proof for this inequality.



Directed cycle

• A directed cycle graph is a directed version of a cycle graph with

all edges being oriented in the same direction.

Example

1 2

3

45

Figure: Directed cycle Graph on 5 vertices.



Directed cactus graph

• A directed cactus graph is a strongly connected digraph in which

each edge is contained in exactly one directed cycle.

OR

• A digraph G is a directed cactus if and only if any two directed

cycles of G share at most one common vertex.



Example

The graph G given in Figure 3 is a directed cactus graph.

1 2

3

6

4

5

7

Figure: A directed cactus graph on 7 vertices.

• In a directed cactus, for each vertex i , δini = δouti and hence it is

balanced.



Spanning tree rooted at a vertex

Suppose G = (V , E) is a digraph with vertex set V = {1, 2, ..., n}

and Laplacian matrix L. A spanning tree of G rooted at vertex i is

a connected subgraph T with vertex set V such that

(i) Every vertex of T other than i has indegree 1.

(ii) The vertex i has indegree 0.

(iii) T has no directed cycles.



Example

The graph H has two spanning trees rooted at 1.

1 2

3

45

1 2

3

45

1 2

3

45

Figure: (a) Digraph H (b) Spanning trees of H rooted at 1.



Notations

• Let ∆1 and ∆2 are non-empty subsets of {1, . . . , n} and

π : ∆1 → ∆2 be a bijection.

• The pair {i , j} ⊂ ∆1 is called an inversion in π if i < j and

π(i) > π(j).

• Let n(π) denote the number of inversions in π.

• For a matrix A, A[∆1,∆2] will denote the submatrix of A

obtained by choosing rows and columns corresponding to ∆1 and

∆2, respectively.

• For ∆ ⊆ {1, 2, . . . , n}, we define α(∆) =
∑

i∈∆ i .



All minors matrix tree theorem (AMMTT)

Let G = (V ,E ) be a digraph with vertex set V = {1, 2, . . . , n} and

Laplacian matrix L. Let ∆1,∆2 ⊂ V be such that |∆1| = |∆2|.

Then

det(L[∆c
1,∆

c
2]) = (−1)α(∆1)+α(∆2)

∑
F

(−1)n(π).

where the sum is over all spanning forests F such that

(a) F contains exactly |∆1| = |∆2| trees.

(b) each tree in F contains exactly one vertex in ∆2 and exactly

one vertex in ∆1.



(c) each directed edge in F is directed away from the vertex in

∆2 of the tree containing that directed edge. (i.e. each vertex

in ∆2 is the root of the tree containing it.)

F defines a bijection π : ∆1 → ∆2 such that π(j) = i if and only if

i and j are in the same oriented tree of F .



• Let κ(G , i) be the number of spanning trees of G rooted at i .

• By AMMTT, it immediately follows that

κ(G , i) = det(L[{i}c , {i}c ]). (1)

• Suppose G is a strongly connected and balanced directed graph.

Let L be the Laplacian matrix of G .

• Since rank(L) = n − 1 and L1 = L′1 = 0, all the cofactors of L

are equal.

• From (1), we see that κ(G , i) is independent of i .

• From here on, we shall denote κ(G , i) simply by κ(G ).



Notation

Let i , j , k ∈ V . We introduce the following two notation.

1. Let #(F [{i →}, {j →}]) denote the number of spanning

forests F of G such that (i) F contains exactly 2 trees, (ii)

each tree in F contains either i or j , and (iii) vertices i and j

are the roots of the respective trees containing them.

2. Let #(F [{k →}, {j →, i}]) denote the number of spanning

forests F of G such that (i) F contains exactly 2 trees, (ii)

each tree in F exactly contains either k or both i and j , and

(iii) vertices k and j are the roots of the respective trees

containing them.



From AMMTT, we deduce the following proposition which will be

used to prove the main result.

Proposition (1)

Let i , j ∈ V be two distinct vertices. Then

(a)

det(L[{i , j}c , {i , j}c ]) = #(F [{i →}, {j →}]).

Proof: Substituting ∆1 = ∆2 = {i , j} in AMMTT, we have

det(L[{i , j}c , {i , j}c ]) = (−1)2i+2j
∑
F

(−1)n(π) (2)

where the sum is over all forests F such that



(i) F contains exactly 2 trees,

(ii) each tree in F contains either i or j , and

(iii) vertices i and j are the roots of the respective trees containing

them.

Since for each such forest F , π(i) = i and π(j) = j , there are no

inversions in π. Thus n(π) = 0.

Hence from (2), we have

det(L[{i , j}c , {i , j}c ]) = #(F [{i →}, {j →}]).

This completes the proof of (a).



(b) If i 6= n and j 6= n, then

det(L[{n, i}c , {n, j}c ]) = (−1)i+j#(F [{n→}, {j →, i}]).

Proof: Substitute ∆1 = {n, i} and ∆2 = {n, j} in AMMTT to

obtain

det(L[{n, i}c , {n, j}c ]) = (−1)2n+i+j
∑
F

(−1)n(π) (3)

where the sum is over all forests F such that

(i) F contains exactly 2 trees,

(ii) each tree in F exactly contains either n or both i and j ,and



(iii) vertices n and j are the roots of the respective trees containing

them.

For each such forest F , π(n) = n and π(i) = j .

Since i , j < n, there are no inversions in π and so n(π) = 0.

From (3), we have

det(L[{n, i}c , {n, j}c ]) = (−1)i+j#(F [{n→}, {j →, i}]).

Hence (b) is proved.



(c) If i 6= 1 and j 6= 1, then

det(L[{1, i}c , {1, j}c ]) = (−1)i+j#(F [{1→}, {j →, i}]).

Proof: The proof of (c) is similar to the proof of (b).



Lemma (1)

Let L be a Z-matrix such that L1 = L′1 = 0 and rank(L) = n − 1.

If e is the vector of all ones in Rn−1, then L can be partitioned as

L =

 B −Be

−e ′B e ′Be

 ,
where B is a square matrix of order n − 1 and

L† =


B−1 − 1

nee
′B−1 − 1

nB
−1ee ′ − 1

nB
−1e

− 1
ne
′B−1 0

 +
e ′B−1e

n2
11′.



Let G = (V ,E ) be a strongly connected and balanced digraph

with vertex set V = {1, 2, . . . , n}, Laplacian matrix L and

resistance matrix R = (rij).

Lemma (2)

Let i , j ∈ V . If (i , j) ∈ E or (j , i) ∈ E , then

det(L[{i , j}c , {i , j}c ]) ≤ κ(G ).

• As G is balanced, we know that δini = δouti for any i .

• We call this common value to be the degree of i .



Lemma (3)

Let (i , j) ∈ E . If either i or j has degree 1, then rij ≤ 1.

Proof.

Without loss of generality, let i = 1 and j = n.

Let B = L[{n}c , {n}c ]. Then

L† =


B−1 − 1

nee
′B−1 − 1

nB
−1ee ′ − 1

nB
−1e

− 1
ne
′B−1 0

 +
e ′B−1e

n2
11′.

Let C = B−1, C = (cij), x = Ce and y = C ′e.



By a well-known result on Z-matrices, C is a non-negative matrix.

Using (36), we have

r1n = l†11 + l†nn − 2l†1n

= c11 −
1

n
y1 −

1

n
x1 +

2

n
x1

= c11 −
1

n
(y1 − x1).

We claim that x1 ≤ y1.

To see this, we consider the following cases:

(i) degree of vertex 1 is one.

(ii) degree of vertex n is one.



Case (i): For k ∈ {2, 3, . . . , n − 1},

c1k =
(−1)1+k

det(B)
det(B[{k}c , {1}c ])

=
(−1)1+k

det(L[{n}c , {n}c ])
det(L[{n, k}c , {n, 1}c ]).

(4)

Using (1) and Proposition 1(b) in (4), we get

c1k =
#(F [{n→}, {1→, k}])

κ(G )
,

As degree of vertex 1 is one, (1, n) is the only edge directed away

from 1.



So, it is not possible for a forest to have a tree such that the tree

does not contain the vertex n but contains both the vertices 1 and

k with 1 as the root.

Therefore, no such forest F exists and hence , c1k = 0 for each

k ∈ {2, 3, . . . , n − 1}.

Using the fact that C is a non-negative matrix, we have

x1 =
n−1∑
k=1

c1k = c11 ≤
n−1∑
k=1

ck1 = y1.

Hence x1 ≤ y1.



Case (ii): R. Balaji, R. B. Bapat and shivani Goel. Resistance

distance in directed cactus graphs, The Electronic Journal of

Linear Algebra, 36(2020).

We now obtain

r1n ≤ c11 =
det(L[{1, n}c , {1, n}c ])

κ(G )
.

By Lemma 2, it follows that r1n ≤ 1. The proof is complete.



Lemma (4)

Let G = (V ,E ) be a directed cactus graph on n vertices. Then

there is a unique directed path from i to j .

Lemma (5)

Let V := {1, . . . , n} and G = (V ,E ) be a directed cactus graph.

Suppose (i , j) ∈ E . If both i and j have degree greater than one,

then V can be partitioned into three disjoint sets

(a) {i , j}

(b) Vj(i →)

(c) Vi (j →),

where Vν(δ →) = {k ∈ V r {δ, ν} : ∃ a directed path from δ to k

which does not pass through ν}.



i

Vj(i →)

j

Vi (j →)

Figure: Partition of a directed cactus graph.



Main result

Theorem

Let G = (V ,E ) be a directed cactus graph with V = {1, 2, . . . , n}.

If R = (rij) and D = (dij) are the resistance and distance matrices

of G , respectively, then rij ≤ dij for each i , j ∈ {1, 2, . . . , n}.

Proof.

By triangle inequality, it suffices to show that if (i , j) ∈ E , then

rij ≤ 1.

In view of Lemma 3, it suffices to show this inequality when both i

and j have degree greater than one.

Without loss of generality, assume i = 1 and j = n.



We know that

r1n = c11 −
1

n
(y1 − x1).

As before, it is sufficient to show that x1 ≤ y1.

Let k ∈ {2, 3, . . . , n − 1}. Then we already know

c1k =
#(F [{n→}, {1→, k}])

κ(G )
,

Also

ck1 =
(−1)1+k

det(B)
det(B[{1}c , {k}c ])

=
(−1)1+k

det(L[{n}c , {n}c ])
det(L[{n, 1}c , {n, k}c ]).

(5)



Using (1) and Proposition 1(b) in (5), we get

ck1 =
#(F [{n→}, {k →, 1}])

κ(G )

Recall that the vertex set V can be partitioned into three disjoint

sets

(a) {1, n}

(b) Vn(1→)

(c) V1(n→).



Observations:

(i) for each k ∈ Vn(1→),

#(F [{n→}, {1→, k}]) = 1

(ii) for every k /∈ Vn(1→),

#(F [{n→}, {1→, k}]) = 0.

(iii) for each k ∈ Vn(1→),

#(F [{n→}, {k →, 1}]) ≥ 1.



Thus, we have

c1k =


1

κ(G )
if k ∈ Vn(1→)

0 otherwise.

and

ck1 ≥
1

κ(G )
, whenever k ∈ Vn(1→).



Since C is a non-negative matrix, we have

x1 =
n−1∑
k=1

c1k

= c11 +
∑

k∈Vn(1→)

c1k

= c11 +
∑

k∈Vn(1→)

1

κ(G )

≤ c11 +
∑

k∈Vn(1→)

ck1 ≤
n−1∑
k=1

ck1 = y1.

Hence, r1n ≤ 1. This completes the proof.
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