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Singular Value Decomposition(SVD)

Let A ∈ Rn×m. If n ≤ m, then an SVD of A is

A = U(Σ 0)V T , where Σ =

 σ1
. . .

σn

 , σ1 ≥ . . . ≥ σn ≥ 0,

and U ∈ Rn×n and V ∈ Rm×m are orthogonal.

The matrix U is called a left singular vector matrix, V is called a right singular
vector matrix, and the scalars σj are called singular values.
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Singular Value Decomposition(SVD)

Let A ∈ Rn×m.

If n ≥ m, then a singular value decomposition(SVD) of A is a
decomposition

A = U
(

Σ
0

)
V T , where Σ =

 σ1
. . .

σm

 , σ1 ≥ . . . ≥ σm ≥ 0,
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Condensed SVD

Let A ∈ Rn×m be a nonzero matrix of rank r . Then, there exist Û ∈ Rn×r ,
Σ̂ ∈ Rr×r and V̂ ∈ Rm×r such that ÛT Û = V̂ T V̂ = Ir , Σ̂ is a diagonal matrix
with main diagonal entries σ1 ≥ · · · ≥ σr > 0, and A = ÛΣ̂V̂ T .
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Existence of SVD

Theorem
Every matrix has an singular value decomposition.

Proof.
Let A be an n ×m matrix with rank r and n ≤ m.

Then the matrix AAT is a symmetric matrix with rank r .

By Spectral theorem, we have AAT = UΛUT , where
Λ = diag(d1, . . . ,dr ,0, . . . ,0) and UT U = I.

Take B = AT U, then BT B = Λ.

Define V = BG where G = diag( 1√
d1
, . . . , 1√

dr
,0, . . . ,0(m-times)).

Let Σ = (
√

Λ 0) Verify UΣV T is a singular value decomposition for A.
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SVD geometry
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Computing SVD

Example
Let us compute SVD for the following 2× 3 matrix,

A =

(
3 1 1
−1 3 1

)
.

In order to find U, we have to start with AAT .

AAT =

(
3 1 1
−1 3 1

) 3 −1
1 3
1 1

 =

(
11 1
1 11

)
.

Next, we have to find the eigenvalues and corresponding eigenvectors of
AAT . After calculating, we get the following eigenvalues and their
corresponding eigenvectors.
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λ = 10; u1 =

(
1
1

)
λ = 12; u2 =

(
1
−1

)
.

Thus the matrix A has singular values σ1 =
√

12 and σ2 =
√

10. Now after

normalizing u1 and u2, we put U =

(
1√
2

1√
2

1√
2

−1√
2

)
.

The calculation of V is similar. V is based on AT A, so we have

AT A =

 3 −1
1 3
1 1

( 3 1 1
−1 3 1

)
=

 10 0 2
0 10 4
2 4 2

 .
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Eigenvalues and their corresponding eigenvectors are as follows

for λ = 12; v1 =

 1
2
1


for λ = 10; v2 =

 2
−1
0


for λ = 0; v3 =

 1
2
−5

 .

After normalization, we get V =


1√
6

2√
5

1√
30

2√
6

−1√
5

2√
30

1√
6

0 −5√
30

 i.e.,

V T =


1√
6

2√
6

1√
6

2√
5

−1√
5

0
1√
30

2√
30

−5√
30


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SVD of A is

A = UΣV T , where Σ =

( √
12 0 0
0

√
10 0

)
.

That is,

A =

(
1√
2

1√
2

1√
2

−1√
2

)( √
12 0 0
0

√
10 0
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Geometric form of SVD

Let A ∈ Rn×m with n ≤ m . Then, Rn has an orthonormal basis {u1, . . . ,un},
Rm has an orthonormal basis {v1, . . . , vm} and there exists
σ1 ≥ σ2 ≥ . . . ,≥ σr > 0 such that

Avi =

{
σiui , if i = 1, . . . , r ,
0 if i ≥ r + 1,

and

AT ui =

{
σivi , if i = 1, . . . , r ,
0 if i ≥ r + 1.

Proof.
A = UΣV T implies AV = UΣ, and AT U = V Σ.
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Four fundamental subspaces

For an n ×m matrix A, the following subspaces are called fundamental
subspaces.

Range space of A: R(A) = {x ∈ Rn : x = Ay for some y ∈ Rm}. (span
of columns of A)

Null space of A: N(A) = {x ∈ Rm : Ax = 0}.

Range space of AT : R(AT ) = {x ∈ Rm : x = AT y for some y ∈ Rn}.

Null space of AT : N(AT ) = {x ∈ Rn : AT x = 0}.
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Basis for fundamental subspaces

If A ∈ Rn×m is a matrix of rank r , and A = UΣV T is the SVD of A, then

R(A) = span{u1, . . . ,ur},

N(A) = span{vr+1, . . . , vm},

R(AT ) = span{v1, . . . , vr},

N(AT ) = span{ur+1, . . . ,un}.

By products

R(A)⊥ = N(AT ) and N(A)⊥ = R(AT ),

If A ∈ Rn×m, then dim(R(A)) + dim(N(A)) = m.
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Illustration
A =

(
3 1 1
−1 3 1

)
=(

1√
2

1√
2

1√
2

−1√
2

)( √
12 0 0
0

√
10 0

)
1√
6

2√
6

1√
6

2√
5

−1√
5

0
1√
30

2√
30

−5√
30

 .

R(A) = span {

(
1√
2
−1√

2

)
,

(
1√
2

1√
2

)
},

N(A) = span {0},

R(AT ) = span {


1√
6

2√
6

2√
5

−1√
5

1√
30

2√
30

},

N(AT ) = span {

 1√
6

0
−5√

30

} .
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SVD - equivalent (and useful) form

Theorem
Let A ∈ Rm×n, and let σ1, . . . , σr be the nonzero singular values of A, with
associated right and left singular vectors v1, . . . , vr and u1, . . . ,ur ,
respectively. Then

A =
r∑

j=1

σjujvT
j .

If A =

(
3 1 1
−1 3 1

)
, then

A = (
√

12)

(
1√
2

1√
2

)(
1√
6
, 2√

5
, 1√

30

)
+ (
√

10)

(
1√
2
−1√

2

)(
2√
6
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5
, 2√
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)
.

15/29



SVD - equivalent (and useful) form

Theorem
Let A ∈ Rm×n, and let σ1, . . . , σr be the nonzero singular values of A, with
associated right and left singular vectors v1, . . . , vr and u1, . . . ,ur ,
respectively. Then

A =
r∑

j=1

σjujvT
j .

If A =

(
3 1 1
−1 3 1

)
, then

A = (
√

12)

(
1√
2

1√
2

)(
1√
6
, 2√

5
, 1√

30

)
+ (
√

10)

(
1√
2
−1√

2

)(
2√
6
, −1√

5
, 2√

30

)
.

15/29



Properties

1 An n ×m matrix has min{m,n} singular values.

2 The singular values are unique, but the singular vector matrices are not.
Although an SVD is not unique, one often says "the SVD" instead of "a
SVD."

3 Let A ∈ Rn×m with n ≥ m. If A = U
(

Σ
0

)
V T is an SVD of A, then

AT = V (Σ 0)UT is an SVD of AT . Therefore, A and AT have the same
singular values.

4 A ∈ Rn×n is nonsingular if and only if all singular values are nonzero, i.e.,
σj > 0,1 ≤ j ≤ n.

5 If A = UΣV T is an SVD of A, then A−1 = V Σ−1UT is an SVD of A−1.
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Theorem
If A ∈ Rn×m has singular values σ1 ≥ . . . ≥ σp, where p = min{m,n}, then
‖A‖2 = max

x 6=0

‖Ax‖2
‖x‖2

= σ1, and ‖A‖2 = ‖AT‖2.

Theorem
‖A‖F = (σ2

1 + · · ·+ σ2
r )

1
2 .
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Properties

Theorem (Condition number)

If A ∈ Rn×n is nonsingular, then κ2(A) = σ1
σn

= maxmag(A)
minmag(A) .

Theorem (Magnification)
If A ∈ Rm×n has singular values σ1 ≥ . . . ≥ σp, where p = min{m,n}, then

max
x 6=0

‖Ax‖2
‖x‖2

= σ1 = maxmag(A),

min
x 6=0

‖Ax‖2
‖x‖2

= σp = minmag(A).

Theorem
Let A ∈ Rn×m. Then ‖AT A‖2 = ‖A‖2

2, and κ2(AT A) = κ(A)2.

18/29



Properties

Theorem (Condition number)

If A ∈ Rn×n is nonsingular, then κ2(A) = σ1
σn

= maxmag(A)
minmag(A) .

Theorem (Magnification)
If A ∈ Rm×n has singular values σ1 ≥ . . . ≥ σp, where p = min{m,n}, then

max
x 6=0

‖Ax‖2
‖x‖2

= σ1 = maxmag(A),

min
x 6=0

‖Ax‖2
‖x‖2

= σp = minmag(A).

Theorem
Let A ∈ Rn×m. Then ‖AT A‖2 = ‖A‖2

2, and κ2(AT A) = κ(A)2.

18/29



Properties

Theorem (Condition number)

If A ∈ Rn×n is nonsingular, then κ2(A) = σ1
σn

= maxmag(A)
minmag(A) .

Theorem (Magnification)
If A ∈ Rm×n has singular values σ1 ≥ . . . ≥ σp, where p = min{m,n}, then

max
x 6=0

‖Ax‖2
‖x‖2

= σ1 = maxmag(A),

min
x 6=0

‖Ax‖2
‖x‖2

= σp = minmag(A).

Theorem
Let A ∈ Rn×m. Then ‖AT A‖2 = ‖A‖2

2, and κ2(AT A) = κ(A)2.

18/29



Properties

Theorem (Condition number)

If A ∈ Rn×n is nonsingular, then κ2(A) = σ1
σn

= maxmag(A)
minmag(A) .

Theorem (Magnification)
If A ∈ Rm×n has singular values σ1 ≥ . . . ≥ σp, where p = min{m,n}, then

max
x 6=0

‖Ax‖2
‖x‖2

= σ1 = maxmag(A),

min
x 6=0

‖Ax‖2
‖x‖2

= σp = minmag(A).

Theorem
Let A ∈ Rn×m. Then ‖AT A‖2 = ‖A‖2

2, and κ2(AT A) = κ(A)2.

18/29



Theorem
Let A ∈ Rn×m, n ≥ m, rank(A) = m, with singular values σ1 ≥ . . . σm > 0.
Then,

1 ‖(AT A)−1‖2 = 1
σ2

m
,

2 ‖(AT A)−1AT‖2 = 1
σm
,

3 ‖AT (AT A)−1‖2 = 1
σm
, and

4 ‖AT (AT A)−1AT‖2 = 1.
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Full rank matrices are dense

Theorem
Let A ∈ Rn×m with rank r such that r < min{n,m}. Then for every ε > 0, there
exists a full rank matrix Aε ∈ Rn×m such that ‖A− Aε‖2 = ε.

Corollary
Full column rank matrices are dense on Rn×m, for n ≤ m.
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Low rank approximation using SVD

Theorem ( Eckart and Young (1936))
Let A ∈ Rn×m have a SVD as in previous definition. If k < rank(A), then the
absolute distance of A to the set of rank k matrices is

σk+1 = min
B∈Rn×m,rank(B)=k

‖A− B‖2 = ‖A− Ak‖2,

where Ak =
k∑

j=1
σjujvT

j .

Corollary
Let A ∈ Rn×m has full rank. Let σ1 ≥ σ2 ≥ · · · ≥ σr > 0, where r = min{n,m}.
If B ∈ Rn×m and ‖A− B‖2 < σr . Then B has full rank. Full rank matrices are
open subset of Rn×m.
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Relative distance to singular matrices

Theorem
Let A ∈ Rn×n be a nonsingular matrix. Let As be the singular matrix closest to
A in the sense that ‖A− As‖2 is as small as possible. Then, ‖A− As‖2 = σn
and

‖A− As‖2

‖A‖2
=

σn

‖A‖2
=

1
‖A‖2‖A−1‖2

=
1

κ2(A)
.
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Applications of SVD - I - Image compression
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Applications of SVD - II - Least squares problems
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Applications of SVD - III - Handwritten digit
classification

Problem: How to classify unknown digit?

Precisely, given a set of manually
classified digits (the training set), classify a set of unknown digits (the test
set).
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A simple algorithm: Distance to the known digits

Measure the distance between the unknown digit to the known digits
using the Euclidean distance.

stack the columns of the image in a vector and identify each digit as a
vector in R256.

Then define the distance function

d(x , y) = ||x − y ||2 =
√

(x1 − y1)2 + · · ·+ (x256 − y256)2.

All the digits of one kind in the training set form a cluster of points in the
Euclidean space R256. (Assumption)

Ideally the clusters are well separated, and the separation between the
clusters depends on how well written the training digits are.

26/29



A simple algorithm: Distance to the known digits

Measure the distance between the unknown digit to the known digits
using the Euclidean distance.

stack the columns of the image in a vector and identify each digit as a
vector in R256.

Then define the distance function

d(x , y) = ||x − y ||2 =
√

(x1 − y1)2 + · · ·+ (x256 − y256)2.

All the digits of one kind in the training set form a cluster of points in the
Euclidean space R256. (Assumption)

Ideally the clusters are well separated, and the separation between the
clusters depends on how well written the training digits are.

26/29



A simple algorithm: Distance to the known digits

Measure the distance between the unknown digit to the known digits
using the Euclidean distance.

stack the columns of the image in a vector and identify each digit as a
vector in R256.

Then define the distance function

d(x , y) = ||x − y ||2 =
√

(x1 − y1)2 + · · ·+ (x256 − y256)2.

All the digits of one kind in the training set form a cluster of points in the
Euclidean space R256. (Assumption)

Ideally the clusters are well separated, and the separation between the
clusters depends on how well written the training digits are.

26/29



A simple algorithm: Distance to the known digits

Measure the distance between the unknown digit to the known digits
using the Euclidean distance.

stack the columns of the image in a vector and identify each digit as a
vector in R256.

Then define the distance function

d(x , y) = ||x − y ||2 =
√

(x1 − y1)2 + · · ·+ (x256 − y256)2.

All the digits of one kind in the training set form a cluster of points in the
Euclidean space R256. (Assumption)

Ideally the clusters are well separated, and the separation between the
clusters depends on how well written the training digits are.

26/29



A simple algorithm: Distance to the known digits

Measure the distance between the unknown digit to the known digits
using the Euclidean distance.

stack the columns of the image in a vector and identify each digit as a
vector in R256.

Then define the distance function

d(x , y) = ||x − y ||2 =
√

(x1 − y1)2 + · · ·+ (x256 − y256)2.

All the digits of one kind in the training set form a cluster of points in the
Euclidean space R256. (Assumption)

Ideally the clusters are well separated, and the separation between the
clusters depends on how well written the training digits are.

26/29



The means (“averages“) of all digits in the training set.
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A simple algorithm: Distance to the known digits

Algorithm

Given the manually classified training set, compute the means mi ,
i = 0,1,2, . . . ,9, of all the 10 digits.

For each digit in the test set, classify it as k if mk is the closest mean.

For some test set, the success rate of this algorithm is around 75%. The

reason for the relatively bad performance is that the algorithm does not use
any information about the variation within each class of digits.

Using singular value decomposition(SVD), we will see a classification
algorithm, for which the success rate is around 93%.
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Algo. for classification of handwritten digits using SVD

Let us consider the 16× 16 matrix representation of the image as vector
in R256×1, by stacking all the columns of the image above each other.

The matrix consisting of all the training digits of one kind. the 3′s say, is
an element of the space A ∈ R256×n.

Each column of A represents an image of a digit 3. If A =
∑m

i=1 σiuivT
i ,

then the left singular vectors ui forms an orthonormal basis for the range
space of A. i.e., "the image of 3′s".

Each digit is well characterized by a few of the first left singular values of
its own kind.

Algorithm
Training: For the training set of known digits, compute the SVD of each set of
digits of one kind.
Classification: For a given test digit, compute its relative residual in all 10
bases. If one residual is significantly smaller than all the others, classify as
that. Otherwise give up.
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