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Singular Value Decomposition(SVD)

Let Ac R™™M If n< m,thenan SVD of Ais

o1
A=U(Z0)V', where ¥ = ,01>...>0,>0,

On

and U € R™" and V € R™* are orthogonal.

The matrix U is called a left singular vector matrix, V is called a right singular
vector matrix, and the scalars o; are called singular values.
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Singular Value Decomposition(SVD)

Let A€ R™™ If n > m, then a singular value decomposition(SVD) of A is a
decomposition

01

A:U<§)VT,whereZ: oy >

Om

and U € R™""and V € R™™ are orthogonal.
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Condensed SVD

Let A € R"™ be a nonzero matrix of rank r. Then, there exist Uec RMT,
Y e R™"and V € R™ such that UTU = VTV = |,, ¥ is a diagonal matrix
with main diagonal entries 1 > --- >0, > 0,and A= UL V.
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Theorem

Every matrix has an singular value decomposition.

Proof.

@ Let Abe an n x m matrix with rank r and n < m.
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Existence of SVD

Theorem
Every matrix has an singular value decomposition.

Proof.
@ Let Abe an n x m matrix with rank r and n < m.
@ Then the matrix AA” is a symmetric matrix with rank r.

@ By Spectral theorem, we have AAT = UAUT, where
A = diag(dh, ..., d;,0,...,0)and UTU = I.

Take B= ATU, then BTB = A.
@ Define V = BG where G = diag(

1 1 i
Ta ﬁ,q ...,0(m-times)).

@ Let X = (v/A0) Verify UL VT is a singular value decomposition for A.
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SVD geometry
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Computing SVD

Example
Let us compute SVD for the following 2 x 3 matrix,

3 1 1
A:<—1 3 1)'
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Computing SVD

Example
Let us compute SVD for the following 2 x 3 matrix,

3 1 1
A:(—1 3 1)'

In order to find U, we have to start with AAT.

3 -1
3 1 1 11 1
T _ —
AA—(131) s _(111)'
1 1
Next, we have to find the eigenvalues and corresponding eigenvectors of

AAT. After calculating, we get the following eigenvalues and their
corresponding eigenvectors.
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A=10; u = |

A=12; Uz—(_11 >

Thus the matrix A has singular values o4

V12 and o, = v/10. Now after
a1 1
normalizing uy and u, we put U = ( v2 )
V2

v3

Va2

/279



)\:10; Uy = 1

)\:12; UQ—(_11>.

Thus the matrix A has singular values o1 = v/12 and o> = v/10. Now after
IR

normalizing us and up, we put U = ( V2 V2 > .
V2 V2

The calculation of V is similar. V is based on AT A, so we have

3 -1 10 0 2
ATA=| 1 3 (31;})= 0 10 4 |.
11 2 4 2

/279



Eigenvalues and their corresponding eigenvectors are as follows

1
for x\=12; vy=| 2
(4)
2
for \=10; w= —1
0
1
for\=0;, w= 2 )
-5
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Eigenvalues and their corresponding eigenvectors are as follows

1

for x\=12; vy=| 2
2

for A\ =10; w, =

—

0

NN —

for A = 0;

<

-

|
(6]

After normalization, we get V =

ARASAR

PRI

Slilsl
2

VT =

gl-shsi-
SslLlse
gl o5~
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SVD of Ais

A—U»:VT,wherez—<\/ﬁ 0 8).

0 10
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SVD of Ais
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Geometric form of SVD

Let A € R™™ with n < m. Then, R" has an orthonormal basis {uy, ..., us},
R™ has an orthonormal basis {v4, ..., vy} and there exists
o1 > 09 > ...,> o, > 0such that

o ojuj, ifi=1,...,r,
A"'—{ 0 ifi>r4t,
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Geometric form of SVD

Let A € R™™ with n < m. Then, R" has an orthonormal basis {uy, ..., us},
R™ has an orthonormal basis {v4, ..., vy} and there exists
o1 > 09 > ...,> o, > 0such that

o ojuj, ifi=1,...,r,
A"'—{o ifi>r 41,
and o
T, _ oiVi, nWi=1,...,r,
A“’_{o if i >r+1.
Proof.

A= UxVT implies AV = Ux, and ATU = V.
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Four fundamental subspaces

For an n x m matrix A, the following subspaces are called fundamental
subspaces.

@ Range space of A: R(A) = {x e R": x = Ay for some y € R™}. (span
of columns of A)
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Basis for fundamental subspaces

If A e R™ ™ is a matrix of rank r, and A = UX VT is the SVD of A, then
@ R(A) =span{uy,..., U},
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Basis for fundamental subspaces

If Ac R"™ ™ is a matrix of rank r, and A = UL VT is the SVD of A, then
@ R(A) =span{uy,..., U},
@ N(A) =span{Vri1,...,Vm},
@ R(AT) =span{wvy,..., v/},
@ N(AT) =span{uri1,...,Un}.
By products
@ R(A)* = N(AT) and N(A)*+ = R(AT),
@ If Ae R™™ then dim(R(A)) + dim(N(A)) = m.

13/29
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SVD - equivalent (and useful) form

Theorem
Let Ac R™" andletoy,...,o, be the nonzero singular values of A, with

associated right and left singular vectors vy, ..., v, and uy, ..., U,
respectively. Then

r
- uivT
A= E oju;V; .
j=1
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SVD - equivalent (and useful) form

Theorem
Let Ac R™" andletoy,...,o, be the nonzero singular values of A, with
associated right and left singular vectors vy, ..., v, and uy, ..., U,

respectively. Then
r
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Properties

@ An nx mmatrix has min{m, n} singular values.

16/29



Properties

@ An nx mmatrix has min{m, n} singular values.

@ The singular values are unique, but the singular vector matrices are not.
Although an SVD is not unique, one often says "the SVD" instead of "a
SVD."

16/29



Properties

@ An nx mmatrix has min{m, n} singular values.

@ The singular values are unique, but the singular vector matrices are not.
Although an SVD is not unique, one often says "the SVD" instead of "a
SVD."

Q LetAcR™Mwithn>m. IfA=U x VT is an SVD of A, then
0

AT = V(£ 0)U" is an SVD of A. Therefore, A and AT have the same
singular values.

16/29



Properties

@ An nx mmatrix has min{m, n} singular values.

@ The singular values are unique, but the singular vector matrices are not.
Although an SVD is not unique, one often says "the SVD" instead of "a
SVD."

Q LetAcR™Mwithn>m. IfA=U x VT is an SVD of A, then
0

AT = V(£ 0)U" is an SVD of A. Therefore, A and AT have the same
singular values.

@ A< R™"js nonsingular if and only if all singular values are nonzero, i.e.,
o >0,1<j<n

16/29



Properties

@ An nx mmatrix has min{m, n} singular values.

@ The singular values are unique, but the singular vector matrices are not.
Although an SVD is not unique, one often says "the SVD" instead of "a
SVD."

Q LetAcR™Mwithn>m. IfA=U x VT is an SVD of A, then
0

AT = V(£ 0)U" is an SVD of A. Therefore, A and AT have the same
singular values.

@ A< R™"js nonsingular if and only if all singular values are nonzero, i.e.,
o >0,1<j<n

@ IFA=UZVTisanSVDof A, then A~' = VX—"U" is an SVD of A~".

16/29



Theorem

If Ae R™"™ has singular values o1 > ... > op, where p = min{m, n}, then
A
1Az = max Lz = 54, and || All = || AT
x#0

[Ix]l2
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Theorem

If Ae R™"™ has singular values o1 > ... > op, where p = min{m, n}, then

A
|All2 = max Il = o1, and [|All2 = ATl
Theorem

IAlE = (oF + -+ 0?)z.
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Properties

Theorem (Condition number)

If A € R™" is nonsingular, then rz(A) = 2 = %Q}.
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Theorem (Magnification)

If Ae R™" has singular values o1 > ... > op, where p = min{m, n}, then

[ Ax]l2
max
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Properties

Theorem (Condition number)

If A € R™" is nonsingular, then rz(A) = 2 = maxmag(4)

minmag(A) *

Theorem (Magnification)

If Ae R™" has singular values o1 > ... > op, where p = min{m, n}, then

[l Ax|l2

Tié( e = 01 = maxmag(A),
l|Ax]|2 — o

r)glég e = p = minmag(A).
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Properties

Theorem (Condition number)

If A € R"™" js nonsingular, then rk»(A) = % = %é}.

Theorem (Magnification)

If Ae R™" has singular values o1 > ... > op, where p = min{m, n}, then

[l Ax|l2

TQS( e = 01 = maxmag(A),
l|Ax]|2 — o

r)glég Xl = %p = minmag(A).

Theorem
Let Ae R™™, Then ||ATA|lz = ||Al2, and ra(ATA) = k(A).
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Theorem

Let A€ R™™ n > m, rank(A) = m, with singular values o1 > ...op > 0.
Then,

Q (ATA) | = L,

Q [(ATA)AT| = L,

Q ATATA |2 = ;—m, and
Q |AT(ATA)AT|p = 1.
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Full rank matrices are dense

Theorem

Let A € R™™ with rank r such that r < min{n, m}. Then for every ¢ > 0, there
exists a full rank matrix A. € R™™ such that |A — Ac|2 = e.
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Full rank matrices are dense

Theorem

Let A € R™™ with rank r such that r < min{n, m}. Then for every ¢ > 0, there
exists a full rank matrix A. € R™™ such that |A — Ac|2 = e.

v

Corollary

Full column rank matrices are dense on R"™™ for n < m.
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Low rank approximation using SVD

Theorem ( Eckart and Young (1936))

Let A€ R™™ have a SVD as in previous definition. If k < rank(A), then the
absolute distance of A to the set of rank k matrices is

= min A-B A-A
Tt = e, o A= Bllo = 1A= Al

k
where Ak = Z (TjUjVI-T.
=
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= min A-B A-A
Tt = e, o A= Bllo = 1A= Al

k
where Ak = Z (TjUjVjT.
=

Corollary

Let A€ R™™ has full rank. Letoy > 09 > -+ > o, > 0, where r = min{n, m}.
If Be R™™ and ||A— Bl|2 < or. Then B has full rank.
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Low rank approximation using SVD

Theorem ( Eckart and Young (1936))

Let A€ R™™ have a SVD as in previous definition. If k < rank(A), then the
absolute distance of A to the set of rank k matrices is

Okt = min A= Bllz = [[A~ Al2,
BERXM rank(B)=

k
where Ak = Z (TjUjVjT.
J=1

Corollary

Let A € R™™M has full rank. Letoy > oo > --- > o, > 0, where r = min{n, m}.
IfBeR™™and ||A— Bl||2 < o,. Then B has full rank. Full rank matrices are
open subset of R™ ™M,
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Relative distance to singular matrices

Theorem

Let A € R™" be a nonsingular matrix. Let As be the singular matrix closest to
A in the sense that |A — As||2 is as small as possible. Then, ||A— As|l2 = on

and
|A — Asll2 on 1 1

1Al 1Al [[All2lA"l2 — k2(A)”

29/9Q



Applications of SVD - | - Image compression
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Applications of SVD - |l - Least squares problems
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Applications of SVD - Il - Handwritten digit
classification

Problem: How to classify unknown digit?
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Applications of SVD - Il - Handwritten digit

classification

Problem: How to classify unknown digit? Precisely, given a set of manually

classified digits (the training set), classify a set of unknown digits (the test

set).
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A simple algorithm: Distance to the known digits

@ Measure the distance between the unknown digit to the known digits
using the Euclidean distance.
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A simple algorithm: Distance to the known digits
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Measure the distance between the unknown digit to the known digits
using the Euclidean distance.

stack the columns of the image in a vector and identify each digit as a
vector in R2%.

Then define the distance function

d(x.y) =[x~ yll2 = /(1 —y1)2 + -+ (xes6 — yese)?.

All the digits of one kind in the training set form a cluster of points in the
Euclidean space R?%8. (Assumption)

Ideally the clusters are well separated, and the separation between the
clusters depends on how well written the training digits are.
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A simple algorithm: Distance to the known digits

Algorithm

@ Given the manually classified training set, compute the means m;,
i=0,1,2,...,9, of all the 10 digits.
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A simple algorithm: Distance to the known digits

Algorithm
@ Given the manually classified training set, compute the means m;,
i=0,1,2,...,9, of all the 10 digits.

@ For each digit in the test set, classify it as k if my is the closest mean.

For some test set, the success rate of this algorithm is around 75%. The

reason for the relatively bad performance is that the algorithm does not use
any information about the variation within each class of digits.

Using singular value decomposition(SVD), we will see a classification
algorithm, for which the success rate is around 93%.

28/929



Algo. for classification of handwritten digits using SVD

@ Let us consider the 16 x 16 matrix representation of the image as vector
in R2%6x1 by stacking all the columns of the image above each other.

29/29



Algo. for classification of handwritten digits using SVD

@ Let us consider the 16 x 16 matrix representation of the image as vector
in R2%6x1 by stacking all the columns of the image above each other.

@ The matrix consisting of all the training digits of one kind. the 3’s say, is
an element of the space A € R2%6%7

29/29



Algo. for classification of handwritten digits using SVD

@ Let us consider the 16 x 16 matrix representation of the image as vector
in R2%6x1 by stacking all the columns of the image above each other.

@ The matrix consisting of all the training digits of one kind. the 3’s say, is
an element of the space A € R2%6%7

@ Each column of A represents an image of a digit 3.

29/29



Algo. for classification of handwritten digits using SVD
@ Let us consider the 16 x 16 matrix representation of the image as vector
in R2%6x1 by stacking all the columns of the image above each other.
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Algo. for classification of handwritten digits using SVD

@ Let us consider the 16 x 16 matrix representation of the image as vector
in R2%6x1 by stacking all the columns of the image above each other.

@ The matrix consisting of all the training digits of one kind. the 3’s say, is
an element of the space A € R2%6%7

@ Each column of A represents an image of a digit 3. If A= >"1", oiu;v/,
then the left singular vectors u; forms an orthonormal basis for the range
space of A. i.e., "the image of 3's".

@ Each digit is well characterized by a few of the first left singular values of
its own kind.

Algorithm

Training: For the training set of known digits, compute the SVD of each set of
digits of one kind.

Classification: For a given test digit, compute its relative residual in all 10
bases. If one residual is significantly smaller than all the others, classify as
that. Otherwise give up.
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