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Reynolds Transport Theorem (RTT)

» All physical laws are stated in terms of various physical parameters. Let B represent any of these
(Velocity, acceleration, mass, temperature, and momentum etc.) fluid parameters and b represent
the amount of that parameter per unit mass. That is

Where m is the mass of the portion of fluid of
B =mb interest.
b=1,ifB=m

» The parameter B is termed as extensive property and the parameter b is termed as
intensive property.

» The value of B is directly proportional to the amount of the mass being considered,
whereas the value of b is independent of the amount of mass.
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The amount of an extensive property that a system possesses at a given instant, B, can be

determined by adding up the amount associated with each fluid particle in the system.
» For infinitesimal fluid particles of size §V and mass pdV this summation (in the limit of §V— 0)

takes the form of an integration over all the particles in the system and can be written as

oV—0

Beys = Jim > bi(pi6¥)) = [, .pbdv
[

» The limits of integration cover the entire system—a (usually) moving volume.
» We have used the fact that the amount of B in a fluid particle of mass pdV is given

in terms of b by
0B = bpdV
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» Most of the laws governing fluid motion involve the time rate of change of an extensive property of
a fluid system—the rate at which the momentum of a system changes with time, the rate at which

the mass of a system changes with time, and so on. Thus, we often encounter terms such as

dBys ([ gyepbdv)

dt dt

» To formulate the laws into a control volume approach, we must obtain an expression for the

time rate of change of an extensive property within a control volume, B, not within a system

This can be written as

dB,, d(/J,pbdv)
dt dt
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Derivation of the Reynolds Transport Theorem

» We consider the control volume to be that stationary volume within the pipe or duct between

sections (1) and (2 ). The system that we consider is that fluid occupying the control volume at

some initial time t
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Fxed controd surface and systam
boundary at tame r

— = = System boundary at time r + &¢
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» A short time later, at time t + dt the system has moved slightly to the right.
» The fluid particles that coincided with section (2) of the control surface at time t have moved a
distance 61, = V,4t to the right, where V, is the velocity of the fluid as it passes section (2).
Similarly, the fluid initially at section (1) has moved a distance §1; = V;6t where V; is the fluid

velocity at section (1).

» If Bis an extensive parameter of the system, then the value of it for the system at time t is

Bsys(t) = By (t)
» since the system and the fluid within the control volume coincide at this time.

Its value at time t + Ot is
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Derivation Continue...
Bgys(t + 6t) = B, (t + 6t)-B;(t + 6t)+B(t + 6t)

» Thus, the change in the amount of B in the system in the time interval §t divided by this time interval
is given by

» If Bis an extensive parameter of the system, then the value of it for the system at time t is

5Bsys . Bsys (t + 5t) o Bsys (t)

ot ot

B, (t + 6t)-B;(t + 6t)+B;(t + 6t) — Bgys(t)
ot

> By using the fact that at the initial time t we have B,,s(t) = B, (t) this
ungainly expression may be rearranged as follows.
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Derivation Continue...

635y5 . B, (t+6t)—B.p(t) _ B;(t+6t) o B (t+46t)

ot ot ot ot

» In the limit §t — 0 the first term on the right-hand side of Eq. is seen to be the time rate of

change of the amount of B within the control volume

 Bey(t +6t) = Bey(t) _ 9By _ 9(J ,pb V)
lim — —
5t—0 ot ot ot
» The third term on the right-hand side of Eq. represents the rate at which the extensive

parameter B flows from the control volume, across the control surface. This can be seen
from the fact that the amount of B within region II, the outflow region, is its amount pe

unit volume, pb times the volume 8V ;= 4,81, = A,(V,6t).Hence
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Derivation Continue...
B (t + 6t) = (p202) (V1= pab, AV, 6t)
» Where b, and p, are the constant values of b and p across section (2). Thus, the rate at which this

property flows from the control volume, Bo'ut is given by

B B;;(t + 6t)
out = S0, Ot

= pA,V; by

» Similarly, the inflow of B into the control volume across section (1) during the time interval
ot corresponds to that in region | and is given by the amount per unit volume times the

VOlume, 5V1= A16l1 = Al(V15t).Hence

B;(t + 6t) = (p1b1)(6Y;= p1b A,V 61)
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Derivation Continue...

» Where b; and p; are the constant values of b and p across section (1). Thus, the rate at
which this property flows from the control volume, B;,, is given by

. ~ By(t + 6t)
Bin = 61%1_1}0 St = p141V1 by

» If we combine all the equations we see that the relationship between the time rate of change

of B for the system and that for the control volume is given by

DB 0B ) ) DB 0B
DStyS = a;v + Bout — Bin Dstys = a;v + p,A;Voby, — p1A1Viby

» This is a simplified version of the Reynolds transport theorem.
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Control volume and system for flow through an
arbitrary, fixed control volume.

» We will now derive it for much more general e
conditions. / . 4

Inflow r'/’
. . . \/// cv-t !
» We consider an extensive fluid property B and seek o /

I
to determine how the rate of change of B AN L7 ot
. . O ‘\\—_ ##i-{//
associated with the system is related to the rate of o
— IXed control surface ana system
. . boundary at time r
change of B within the control volume at any ot oo o e 1+ 51
instant.

FREE ONLINE EDUCATION é
LA Ma

1eridia viea




» In general, the control volume may contain more (or less) than one inlet and one outlet.
A typical pipe system may contain several inlets and outlets as are shown in Fig.
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Outflow
portion of
control
surface
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The term B(;ut represents the net flowrate of the property B from the control volume.
» Its value can be thought of as arising from the addition (integration) of the contributions
through each infinitesimal area element of size on the portion A of the control surface

dividing region Il and the control volume. This surface is denoted CS,,; -
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> The rate at which B is carried out of the control volume across the small area element

In time 6t the volume of fluid that passes across each area element is given by 6V= 61,,0A, where
0l,, = 8lcosB is the height (normal to the base, 64 ) of the small volume element, and @ is the
rate at which B is carried out of the control volume across the small area element denoted is angle
between the velocity vector and the outward pointing normal to the surface, 7. Thus, since 61 =
V'8t the amount of the property B carried across the area element 64 in the time interval 6t is

given by
OB = bpdV= bp(V cosf ét) SA

SA,denoted 8B, , is
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In time 0t the volume of fluid that passes across each area element is given by 6V=
0l,0A, where 0l,, = 6lcosO is the height (normal to the base, 6A ) of the small volume
element, and @ is the rate at which B is carried out of the control volume across the small area
element denoted is angle between the velocity vector and the outward pointing normal to the
surface, 7. Thus, since 61 = V't the amount of the property B carried across the area element

0A in the time interval 4t is given by

- pbdY  (pbV cosB 6t)6A
= lim
5t—-0 Ot 5t—0 ot
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» The rate at which B is carried out of the control volume across the small area element §A,denoted
8B, , is

» By integrating over the entire outflow portion of the control surface, CS,,; we obtain

B,y = CSons dB,,: = | CSons pbV cosO 6A

» The quantity VV cos@ is the component of the velocity normal to the area element dA.
» From the definition of the dot product, this can be written as IV cos@ = V.n. Hence, an
alternate form of the outflow rate is

Sout

e
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In a similar fashion, by considering the inflow portion of the control surface, CS;,, can be
written as

B;, = —fCSin pbV cosf 6A = —[ .. pbV.7 64

» For outflow regions (the normal component of V is positive)

V.i>0, —90° <0 <90°

» For inflow regions (the normal component of V is negative)

V.Ai<0, 90° <0 <270°
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» The value of cos@ is, therefore, positive on the CV,,,; portions of the control surface and negative
on the CV;, portions. Over the remainder of the control surface, there is no inflow or outflow,
leading to V.11 = V cos@ = 0 on those portions. On such portions either IV = 0 (the fluid “sticks”

to the surface) or cosf = 0 (the fluid “slides "along the surface without crossing it)

Inflow
portion of
control surface

(a) (b) (c)
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» Therefore, the net flux (flowrate) of parameter B across the entire control surface is
Bowt — Bin = [ s, pbV.7A6A—(—[ 5 pbV.716A)

= [ . pbV.7 6A

» Where the integration is over the entire control surface. By combining above equations we
obtain
DBSyS 0B,

Dt o +fCSpr.n6A

This can be written in a slightly different form by using so that
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This can be written in a slightly different form by using B.,, = fcv pbdV so that

DBsys 0 _
e Efcvpbdv + fcspr.ncSA

This is the general form of the Reynolds transport theorem for a fixed, nondeforming control

volume.
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Moving from a System to a Control Volume

* Mass

e Linear Momentum

H * Moment of Momentum

* Energy

* Putting it all together!




Conservation of Mass

B = Total amount of massin the system
b= Mmassper unitmass=_1

DBSyS 0 |
ot = a1, j phdV-+ j pbV-AdA v equation
5o
m ;jpvarJ'pV.ﬁdA But DM, /Dt = 0!
ij-ﬁdAz _gj‘pdv_ Continuity Equation

CS
mass leaving - mass entering = - rate of increase of mass in cv



Munson Movies/V5_1 Mass Conservation in Sink.mov
Munson Movies/V5_1 Mass Conservation in Sink.mov

Conservation of Mass 2

1

0 If massincv 4

) cl IS constant o
Al

— = Unit vector i is Normal to surface and

\ pointed _OUL of cv

We assumed uniform P on the
control surface

A V is the spatially averaged

velocity normal to the cs




Continuity Equation for Constant Density and Uniform Velocity

I @Vl ‘N, dA +(}[ @Vz -N,dA=0 Density is constant across cs
—/51\71:63 +/2\72A2 -0 Density is the same at cs; and cs,

ViA =V.A, =Q  [LT]

Simple version of the continuity equation for
V1A1 =V2A2 =Q  conditions of constant density. It is understood

that the velocities are either uniform or

spatially averaged




Example: Conservation of Mass?

\/

The flow out of a reservoir 1s 2 L/s. The reservoir
surface 1Is5 m x 5 m. How fast iIs the reservoir
surface dropping?

: o
st/v-ndAz_ach/N
jv.ﬁdA:_ﬁ Constant density

cs Velocity of the reservoir surface

V-
o8
Ares

Ny

h




Linear Momentum Equation

D b\~ bV-AdA  CV equation
_l_
Dt jp jp STF =0
B= mV momentum - momentum/unit mass
g "= Vectors!
DmV ¢
V- + | VpV -ndA
Dt atcjvp j P
M:IV V- AdA Steady state
Dt P

This 1s the “ma” side of the F = ma equation!



Munson Movies/V5_4 Jet momentum Pelton Wheel.mov
Munson Movies/V5_4 Jet momentum Pelton Wheel.mov

Linear Momentum Equation

DmV_ VpV - ndA
Dt j pv - I

DMV _ =
- lelV f,dA+ j V, p,V, -1, dA

Dt

CSlL»l« / cs,

DmV ( VLAV, + (o, VoAV, Assumptions

e S s Uniform density
M; = =(pi14Vy = —(pQ)Vy Uniform velocity
M, = (p,V24,)V, = (pQ)V; VLA

Steady
\Vectors!!!

V fluid velocity relative to cv




Steady Control Volume Form of Newton’s Second Law
D(mV)

PIEE ~ =M, +M,

* What are the forces acting on the fluid in the
control volume?
= Gravity

= Shear at the solid surfaces Z F-M. + M
T 1 2
" Pressure at the solid surfaces

"  Pressure on the flow surfaces

+ F

Pwall Twall

zF=W+Fp1+Fp2+F

on control surfaces? No velocity tangent to control surface

Why no shear




Linear Momentum Equation

ZF=W+Fp1+Fp2+FSS

ma:M1+M2

Mi+M;, =W+EF, +F, +Fg Forces by solid surfaces on fluid
The momentum vectors
have the same direction

as the velocity vectors

M; = —(pQ)V;

M, = (pQ)V;




Example: Reducing Elbow 2

Reducing elbow in vertical plane with water flow of 300 L/s.

- T

The volume of water in the elbow is 200 L. Energy loss is 1m
negligible. Calculate the force of the elbow on the fluid. 1 '
W = -pg*volume=-1961 N T

section 1 section 2 M, +M, =W+ |:IOl 4 |:IOZ +F_
D 50 cm 30 cm Z
A 0.196 m?2 0.071 m? |
\V; 1.53m/s 4.23 m/s >
P 150 kPa & Direction of V vectors p
M -459 N 1270 N =

29,400 N T V—




Example: What is p,?

V2 V.2
B+t =2h g
Y1 29 V2 29

Ve Vg
P2 =pP1+Y|Z21— 2, +E_E

(1.53 m/s)? — (4.23 m/s)?
2(9.8 m/s?)

p, = (150 x 103Pa) + (9810 N/m3) [0 —1m+

P, =132 kPa Fyo = 9400 N




Example: Reducing Elbow Horizontal Forces

M, +M, :W+Fp1+|:p2 +F
F. :I\/I1+M2—W—Fp1—Fp2

F. =y/lx +M, —}(—% -F,

F x:MZX_FpZ

F.. =(1270N)—(-9400N)
F. =10.7KN  Force of pipe on fluid

Fluid is pushing the pipe to the _left




Example: Reducing Elbow Vertical Forces ,

I:ssZ — |\/Ilz +D/22 _WZ - Fplz _%m

Fo =M, -1, - F, 1 W

F. :—459N (01 961N)—(29,400N) Fo TT M,
bz

F., =—27.9KN 28 kN acting downward on fluid | y

Pipe wants to move __ Up




Moment of Momentum Equation

DB,
Dt

%, -
=ajpbd¥+jpr-HdA Cv equation

B=mrxV Moment of momentum

mr x\V Moment of momentum/unit mass

b
m
D(mrxV) o

e | pexVdv-+ [ p(rxV)(V-n)dA

T:jp(rxV)(V-ﬁ)dA Steady state



Munson Movies/V5_5 Angular momentum garden sprinkler.mov
Munson Movies/V5_5 Angular momentum garden sprinkler.mov

Turbomachinery




Practice Problem

A jet of oil (RD = 0.80) issues from nozzle of 15 cm diameter with a velocity of 12 m/s. A smooth cone with
vertex angle of 90° deflects the jet. The jet is horizontal and the vertex of the cone points towards the jet.
Calculate the force required to hold the cone in position.

Solution:

Consider a control volume as shown in fig. Let R, = reaction
of the cone on the fluid in the control volume. The pressure
is everywhere atmospheric. As the cone is smooth, by
neglecting friction the velocity of the sheet of water over
the cone is V everywhere. The inclination of the velocity V
to axis is 90°/2 = 45°

<
!
F-ib:?lp-1

A =7 x (0.15)?=0.01767 m? p =0.8x%x998 = 798.4 kg/m3

Q=AV=0.01767 X12 =0.2121 m3/s
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By momentum Equation in X- direction:
0- R, =pQ(V cos 45°- V)
R, =pQV (1- cos 45°)
=798.4x0.2121 x 12 x (1- cos 45°)
=595 N
By symmetry, R, =0
Hence, the resultant reaction force on the fluid R= R,. . Thus the force required to

hold the cone in position is F =R = R, =595 N long (- X) direction.
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Practice Problem

A pipeline is 15 cm in diameter and is at an elevation of 100.00 m at section A. At section B it is at
an elevation of 107.00 m and has a diameter of 30 cm. When a discharge of 50 L/s of water is

passed through this pipe the pressure at section A is observed to be 30 kPa. The energy loss in the

pipe is 2 m. Calculate the pressure at B when the flow is (i) from A to B and (ii) from B to A.

O

107.00 m

30 cm Dia

100.00 m

Datum
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Solution:
Q =0.05md/s
Let suffixes 1 and 2 refer to sections A and B respectively.
Q 0.05

V. = =
LA Tx(0.15)2

= 2.829 m/s

R0 N
V, = A2 T(030)? 0.7074 m/s

y = unit weight of water =998 x 9.81/1000 = 9.79 kN/m?
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(i) When the flow is from A to B: Taking the atmospheric pressure as zero

2

V2 V.
Lz ) =22z, +h,
Y 29 Y 29

(2.829)2 p, (0.7074)2

FREE ONLINE EDUCATION

wayam

Terldia wiea, 3 aa aia

+ 100.00) =—+ + 107.0 + 2.0

2 X 9.81 Yy 2x%9.81

3.064 + 0.4080 + 100.00 = % + 0.0255 + 107.0 + 2.0

% =— 5.554 m (gauge)

p, = —5.554x9.79 = — 54.37 kPa (gauge)

Y




(i) When the flow is from B to A: Taking atmospheric pressure as zero,

P2 sz P1 V12
—+——+4+Z,|-H, =|—+—+~7
<y+Zg+ 2) L <y+2g+ 1

p, (0.7074)2

N 30 (2.829)2
y | 2x9.81

+ 107.0 — 2.0 = ( + + 100.00)

9.79 2x9.81

% + 0.0255 + 107.0 — 2.0 = 3.064 + 0.4080 + 100.00

% =— 1.554 m (gauge)

p, = —1.554x9.79 = —15.21 kPa (gauge)
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Practice Problem

A discharge of 0.06 m3/s flows through a horizontal bend as shown in fig. Calculate the force on the bolts in section 1.

The control volume is shown in dotted lines. The Reaction on the control volume fluid is shown as R, in
positive x- direction.

Discharge Q = % X (D,)?xV,=0.06m3 /s

006 v (D) 5\% _
Vo= iooen = 3056m/s  Vy=V, (2) =30.56x (=) =3.395m/s
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By applying Bernoulli equation to sections 2 and 1, by assuming the bend to be in horizontal plane,

(30.56)> _ P, (3.395)?

2x981 y 2x981

.....(P, = atmospheric)

% = 47.59 - 0.59 = 47.00 m

P;=47.00 X 9.79 = 460.2 kPa
By momentum equation in the x- direction,

—P;A1+R,—0 = pQ (V, -(-V,))
—(460.2 x 103) x% x (0.15)2 + R, = 998 x 0.06 x(30.56 + 3.395)

R, =8132 +2033 =10165 N
The force F exerted by the fluid on the pipe and hence on the bolts in section 1, is equal and

opposite to R, .Thus F = 10165 N and acts to left, i.e., in the negative x-direction, as a pull (tension )

on the joint.
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Practice Problem

A 7.5 cm diameter water jet having a velocity of 12 m/s impinges on a plane, smooth plate at an
angle of 60° to the normal to the plate. What will be the impact force when (i) the plate is stationary
and (ii) when moving in the direction of the jet at 6 m/s. Estimate the work done per unit time on the

. V.
plate in each case. :

Solution: Consider the normal and tangential \

directions and a control volume as shown in Fig . Let R,,

be the normal reaction on the fluid in the control

volume. Consider the normal direction n. The pressure

in the jet is atmospheric.
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(i) When the plate is stationary:

0—R,=pQ (0 — V,cos 0)
R,=pQV,cos 0

=998 x | X (0.075)? X 12| x 12 cos 60° =317.45 N

The normal force of the jet on plate is F,, = 317.45 N in the positive n direction (oppositeto R,).
(ii) When the plate moves in the x-direction with u = 6 m/s.
Considering normal direction and relative velocities:
—R,=pQ, (0 —V4, cos )

R, = pA V4% cos 8

V,, =12.0-6.0=6.0 m/s
R = 998XE X (0.075)% x 62] x cos 60°
=79.36 N
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The normal force of the water jet on the plate F, will be equal and opposite to R,..
Hence F,=79.36 N and acts in positive n direction.

Work done W=F, xu,=F, cos 60°xu
In case (J)u=0,W=0
(i) u=6 m/s,
W=79.36x0.5x6.0

=238.08 N.m/s
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