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Reynolds Transport Theorem (RTT)
 All physical laws are stated in terms of various physical parameters. Let B represent any of these

(Velocity, acceleration, mass, temperature, and momentum etc.) fluid parameters and b represent
the amount of that parameter per unit mass. That is

 The parameter B is termed as extensive property and the parameter b is termed as
intensive property.

 The value of B is directly proportional to the amount of the mass being considered,
whereas the value of b is independent of the amount of mass.

B = 𝑚𝑏
Where m is the mass of the portion of fluid of
interest.
b = 1, if B = m



 The amount of an extensive property that a system possesses at a given instant, 𝐵𝑠𝑦𝑠 can be

determined by adding up the amount associated with each fluid particle in the system.

 For infinitesimal fluid particles of size 𝛿∀ and mass 𝜌𝛿∀ this summation (in the limit of 𝛿∀→ 0)

takes the form of an integration over all the particles in the system and can be written as

The limits of integration cover the entire system—a (usually) moving volume.

We have used the fact that the amount of B in a fluid particle of mass 𝜌𝛿∀ is given

in terms of b by

𝐵𝑠𝑦𝑠 = lim
𝛿∀→0



𝑖

𝑏𝑖 𝜌𝑖𝛿∀𝑖 = ∫𝑠𝑦𝑠𝜌𝑏 ⅆ∀

𝛿𝐵 = 𝑏𝜌𝛿∀



 Most of the laws governing fluid motion involve the time rate of change of an extensive property of

a fluid system—the rate at which the momentum of a system changes with time, the rate at which

the mass of a system changes with time, and so on. Thus, we often encounter terms such as

 To formulate the laws into a control volume approach, we must obtain an expression for the

time rate of change of an extensive property within a control volume, 𝐵𝑐𝑣, not within a system.

This can be written as

ⅆ𝐵𝑠𝑦𝑠
ⅆ𝑡

=
ⅆ ∫𝑠𝑦𝑠𝜌𝑏 ⅆ∀

ⅆ𝑡

ⅆ𝐵𝑐𝑣
ⅆ𝑡

=
ⅆ ∫𝑐𝑣𝜌𝑏 ⅆ∀

ⅆ𝑡



Derivation of the Reynolds Transport Theorem
 We consider the control volume to be that stationary volume within the pipe or duct between

sections (1) and (2 ). The system that we consider is that fluid occupying the control volume at

some initial time t



 A short time later, at time 𝑡 + 𝛿𝑡 the system has moved slightly to the right.

 The fluid particles that coincided with section (2) of the control surface at time t have moved a

distance 𝛿𝑙2 = 𝑉2𝛿𝑡 to the right, where 𝑉2 is the velocity of the fluid as it passes section (2).

Similarly, the fluid initially at section (1) has moved a distance 𝛿𝑙1 = 𝑉1𝛿𝑡 where 𝑉1 is the fluid

velocity at section (1).

 If B is an extensive parameter of the system, then the value of it for the system at time t is

𝐵𝑠𝑦𝑠 𝑡 = 𝐵𝑐𝑣 𝑡

 since the system and the fluid within the control volume coincide at this time.

Its value at time 𝑡 + 𝛿𝑡 is



Derivation Continue…

 Thus, the change in the amount of B in the system in the time interval 𝛿𝑡 divided by this time interval
is given by

𝐵𝑠𝑦𝑠 𝑡 + 𝛿𝑡 = 𝐵𝑐𝑣 𝑡 + 𝛿𝑡 -𝐵𝐼 𝑡 + 𝛿𝑡 +𝐵𝐼𝐼 𝑡 + 𝛿𝑡

 If B is an extensive parameter of the system, then the value of it for the system at time t is

𝛿𝐵𝑠𝑦𝑠
𝛿𝑡

=
𝐵𝑠𝑦𝑠 𝑡 + 𝛿𝑡 − 𝐵𝑠𝑦𝑠 𝑡

𝛿𝑡

=
𝐵𝑐𝑣 𝑡 + 𝛿𝑡 −𝐵𝐼 𝑡 + 𝛿𝑡 +𝐵𝐼𝐼 𝑡 + 𝛿𝑡 − 𝐵𝑠𝑦𝑠 𝑡

𝛿𝑡

 By using the fact that at the initial time t we have 𝐵𝑠𝑦𝑠 𝑡 = 𝐵𝑐𝑣 𝑡 this

ungainly expression may be rearranged as follows.



Derivation Continue…
𝛿𝐵𝑠𝑦𝑠

𝛿𝑡
=

𝐵𝑐𝑣 𝑡+𝛿𝑡 −𝐵𝑐𝑣 𝑡

𝛿𝑡
−

𝐵𝐼 𝑡+𝛿𝑡

𝛿𝑡
+
𝐵𝐼𝐼 𝑡+𝛿𝑡

𝛿𝑡

 In the limit 𝛿𝑡 → 0 the first term on the right-hand side of Eq. is seen to be the time rate of

change of the amount of B within the control volume

lim
𝛿𝑡→0

𝐵𝑐𝑣 𝑡 + 𝛿𝑡 − 𝐵𝑐𝑣 𝑡

𝛿𝑡
=
𝜕𝐵𝑐𝑣
𝜕𝑡

=
𝜕 ∫𝑐𝑣𝜌𝑏 ⅆ∀

𝜕𝑡
 The third term on the right-hand side of Eq. represents the rate at which the extensive

parameter B flows from the control volume, across the control surface. This can be seen

from the fact that the amount of B within region II, the outflow region, is its amount per

unit volume, 𝜌𝑏 times the volume δ∀𝐼𝐼= 𝐴2𝛿𝑙2 = 𝐴2 𝑉2𝛿𝑡 .Hence



Derivation Continue…
𝐵𝐼𝐼 𝑡 + 𝛿𝑡 = 𝜌2𝑏2 𝛿∀𝐼𝐼= 𝜌2𝑏2𝐴2𝑉2𝛿𝑡

 Where 𝑏2 and 𝜌2 are the constant values of b and 𝜌 across section (2). Thus, the rate at which this

property flows from the control volume, ሶ𝐵𝑜𝑢𝑡 is given by

ሶ𝐵𝑜𝑢𝑡 = lim
𝛿𝑡→0

𝐵𝐼𝐼 𝑡 + 𝛿𝑡

𝛿𝑡
= 𝜌2𝐴2𝑉2 𝑏2

 Similarly, the inflow of B into the control volume across section (1) during the time interval

𝛿𝑡 corresponds to that in region I and is given by the amount per unit volume times the

volume, δ∀𝐼= 𝐴1𝛿𝑙1 = 𝐴1 𝑉1𝛿𝑡 .Hence

𝐵𝐼 𝑡 + 𝛿𝑡 = 𝜌1𝑏1 𝛿∀𝐼= 𝜌1𝑏1𝐴1𝑉1𝛿𝑡



Derivation Continue…
 Where 𝑏1 and 𝜌1 are the constant values of b and 𝜌 across section (1). Thus, the rate at

which this property flows from the control volume, ሶ𝐵𝑖𝑛 is given by

ሶ𝐵𝑖𝑛 = lim
𝛿𝑡→0

𝐵𝐼 𝑡 + 𝛿𝑡

𝛿𝑡
= 𝜌1𝐴1𝑉1 𝑏1

 If we combine all the equations we see that the relationship between the time rate of change

of B for the system and that for the control volume is given by

𝐷𝐵𝑠𝑦𝑠

𝐷𝑡
=
𝜕𝐵𝑐𝑣
𝜕𝑡

+ ሶ𝐵𝑜𝑢𝑡 − ሶ𝐵𝑖𝑛
𝐷𝐵𝑠𝑦𝑠

𝐷𝑡
=
𝜕𝐵𝑐𝑣
𝜕𝑡

+ 𝜌2𝐴2𝑉2𝑏2 − 𝜌1𝐴1𝑉1𝑏1

 This is a simplified version of the Reynolds transport theorem.



Control volume and system for flow through an 
arbitrary, fixed control volume.

 We will now derive it for much more general
conditions.

 We consider an extensive fluid property B and seek
to determine how the rate of change of B
associated with the system is related to the rate of
change of B within the control volume at any
instant.



 In general, the control volume may contain more (or less) than one inlet and one outlet.
A typical pipe system may contain several inlets and outlets as are shown in Fig.





 The term ሶ𝐵𝑜𝑢𝑡 represents the net flowrate of the property B from the control volume.

 Its value can be thought of as arising from the addition (integration) of the contributions

through each infinitesimal area element of size on the portion 𝛿A of the control surface

dividing region II and the control volume. This surface is denoted 𝐶𝑆𝑜𝑢𝑡 .



 In time 𝛿𝑡 the volume of fluid that passes across each area element is given by δ∀= 𝛿𝑙𝑛𝛿𝐴, where

𝛿𝑙𝑛 = 𝛿𝑙𝑐𝑜𝑠𝜃 is the height (normal to the base, 𝛿𝐴 ) of the small volume element, and 𝜃 is the

rate at which B is carried out of the control volume across the small area element denoted is angle

between the velocity vector and the outward pointing normal to the surface, ො𝑛. Thus, since 𝛿𝑙 =

𝑉𝛿𝑡 the amount of the property B carried across the area element 𝛿𝐴 in the time interval 𝛿𝑡 is

given by
𝛿𝐵 = 𝑏𝜌𝛿∀= 𝑏𝜌 𝑉 𝑐𝑜𝑠𝜃 𝛿𝑡 𝛿A

 The rate at which B is carried out of the control volume across the small area element

𝛿A,denoted ሶ𝛿𝐵𝑜𝑢𝑡 , is



 In time 𝛿𝑡 the volume of fluid that passes across each area element is given by δ∀=

𝛿𝑙𝑛𝛿𝐴, where 𝛿𝑙𝑛 = 𝛿𝑙𝑐𝑜𝑠𝜃 is the height (normal to the base, 𝛿𝐴 ) of the small volume

element, and 𝜃 is the rate at which B is carried out of the control volume across the small area

element denoted is angle between the velocity vector and the outward pointing normal to the

surface, ො𝑛. Thus, since 𝛿𝑙 = 𝑉𝛿𝑡 the amount of the property B carried across the area element

𝛿𝐴 in the time interval 𝛿𝑡 is given by

ሶ𝛿𝐵𝑜𝑢𝑡 = lim
𝛿𝑡→0

𝜌𝑏𝛿∀

𝛿𝑡
= lim

𝛿𝑡→0

𝜌𝑏𝑉 𝑐𝑜𝑠𝜃 𝛿𝑡 𝛿𝐴

𝛿𝑡

= 𝜌𝑏𝑉 𝑐𝑜𝑠𝜃 𝛿𝐴



 By integrating over the entire outflow portion of the control surface, 𝐶𝑆𝑜𝑢𝑡 we obtain

 The quantity 𝑉 𝑐𝑜𝑠𝜃 is the component of the velocity normal to the area element 𝛿𝐴.

 From the definition of the dot product, this can be written as 𝑉 𝑐𝑜𝑠𝜃 = 𝑉. ෝ𝑛. Hence, an

alternate form of the outflow rate is

ሶ𝐵𝑜𝑢𝑡 = ∫
𝐶𝑆𝑜𝑢𝑡

ⅆ ሶ𝐵𝑜𝑢𝑡 = ∫𝐶𝑆𝑜𝑢𝑡
𝜌𝑏𝑉 𝑐𝑜𝑠𝜃 𝛿𝐴

ሶ𝐵𝑜𝑢𝑡 = ∫𝐶𝑆𝑜𝑢𝑡
𝜌𝑏𝑉. ො𝑛 𝛿𝐴

 The rate at which B is carried out of the control volume across the small area element 𝛿A,denoted
ሶ𝛿𝐵𝑜𝑢𝑡 , is



 In a similar fashion, by considering the inflow portion of the control surface, 𝐶𝑆𝑖𝑛 can be
written as

 For outflow regions (the normal component of V is positive)

ሶ𝐵𝑖𝑛 = −∫𝐶𝑆𝑖𝑛
𝜌𝑏𝑉 𝑐𝑜𝑠𝜃 𝛿𝐴 = −∫𝐶𝑆𝑖𝑛

𝜌𝑏𝑉. ො𝑛 𝛿𝐴

𝑉. ො𝑛 > 0 , −900 < 𝜃 < 900

 For inflow regions (the normal component of V is negative)

𝑉. ො𝑛 < 0 , 900 < 𝜃 < 2700



 The value of 𝑐𝑜𝑠𝜃 is, therefore, positive on the 𝐶𝑉𝑜𝑢𝑡 portions of the control surface and negative

on the 𝐶𝑉𝑖𝑛 portions. Over the remainder of the control surface, there is no inflow or outflow,

leading to 𝑉. ො𝑛 = 𝑉 𝑐𝑜𝑠𝜃 = 0 on those portions. On such portions either 𝑉 = 0 (the fluid “sticks”

to the surface) or 𝑐𝑜𝑠𝜃 = 0 (the fluid “slides "along the surface without crossing it)



 Therefore, the net flux (flowrate) of parameter B across the entire control surface is

ሶ𝐵𝑜𝑢𝑡 − ሶ𝐵𝑖𝑛 = ∫𝐶𝑆𝑜𝑢𝑡
𝜌𝑏𝑉. ො𝑛 𝛿𝐴 − −∫𝐶𝑆𝑖𝑛

𝜌𝑏𝑉. ො𝑛 𝛿𝐴

= ∫𝑐𝑠 𝜌𝑏𝑉. ො𝑛 𝛿𝐴

 where the integration is over the entire control surface. By combining above equations we
obtain

𝐷𝐵𝑠𝑦𝑠
𝐷𝑡

=
𝜕𝐵𝑐𝑣
𝜕𝑡

+ ∫𝑐𝑠 𝜌𝑏𝑉. ො𝑛 𝛿𝐴

This can be written in a slightly different form by using so that 



This can be written in a slightly different form by using 𝐵𝑐𝑣 = ∫
𝑐𝑣

𝜌𝑏ⅆ∀ so that

𝐷𝐵𝑠𝑦𝑠
𝐷𝑡

=
𝜕

𝜕𝑡
∫𝑐𝑣 𝜌𝑏ⅆ∀ + ∫𝑐𝑠 𝜌𝑏𝑉. ො𝑛 𝛿𝐴

This is the general form of the Reynolds transport theorem for a fixed, nondeforming control
volume.



Moving from a System to a Control Volume

• Mass

• Linear Momentum

• Moment of Momentum

• Energy

• Putting it all together!



Conservation of Mass

B = Total amount of ____ in the system
b = ____ per unit mass = __ 

ˆsys

cv cs

DM
dV dA

Dt t
 


  
   V n

ˆ

cs cv

dA dV
t

 


  
 V n

mass
1mass

But DMsys/Dt = 0!

cv equation

mass leaving - mass entering = - rate of increase of mass in cv

ˆsys

cv cs

DB
bdV b dA

Dt t
 


  
   V n

Continuity Equation

Munson Movies/V5_1 Mass Conservation in Sink.mov
Munson Movies/V5_1 Mass Conservation in Sink.mov


Conservation of Mass

If mass in cv 

is constant
ˆ

cs cv

dA dV
t

 


  
 V n

Unit vector     is ______ to surface and 
pointed ____ of cv

n̂ normal

out

ˆ

cs

dA   V n m±VAr± =

1

2

V1
A1

n̂

We assumed uniform ___ on the 
control surface



is the spatially averaged 
velocity normal to the cs
V

[M/T]

ˆ

cs

dA

V
A




V n



Continuity Equation for Constant Density and Uniform Velocity

1 21 1 2 2 0V A V A   

1 21 2V A V A Q 

1 2

1 1 1 2 2 2
ˆ ˆ 0

cs cs

dA dA     V n V n Density is constant across cs

Density is the same at cs1 and cs2

[L3/T]

Simple version of the continuity equation for 

conditions of constant density. It is understood 

that the velocities are either ________ or 

_______ ________.

1 1 2 2V A V A Q 

uniform

spatially averaged



Example: Conservation of Mass?

The flow out of a reservoir is 2 L/s. The reservoir 

surface is 5 m x 5 m. How fast is the reservoir 

surface dropping?

resA

Q

dt

dh


dt

dhA
Q res

out 

Constant density

ˆ

cs cv

dA dV
t

 


  
 V n

ˆ

cs

V
dA

t


  

V n

h

out in

dV
Q Q

dt
  

Velocity of the reservoir surface



Linear Momentum Equation

mB V m

m


V
b

cv equation

momentum momentum/unit mass

Steady state

ˆsys

cv cs

DB
bdV b dA

Dt t
 


  
   V n

ˆ

cv cs

Dm
dV dA

Dt t
 


  
  

V
V V V n

ˆ

cs

Dm
dA

Dt
 

V
V V n

0F 

This is the “ma” side of the F = ma equation!

Vectors!

Munson Movies/V5_4 Jet momentum Pelton Wheel.mov
Munson Movies/V5_4 Jet momentum Pelton Wheel.mov


Linear Momentum Equation

𝐷𝑚𝐕

𝐷𝑡
= − 𝜌1𝑉1𝐴1 𝐕1 + 𝜌2𝑉2𝐴2 𝐕2

𝐌1 = − 𝜌1𝑉1𝐴1 𝐕1 = − 𝜌𝑄 𝐕1

𝐌2 = 𝜌2𝑉2𝐴2 𝐕2 = 𝜌𝑄 𝐕2

Assumptions

Vectors!!!

Uniform density

Uniform velocity

V  A

Steady

𝐷𝑚𝐕

𝐷𝑡
= න

𝑐𝑠

𝐕𝜌𝐕 ⋅ ෝ𝐧ⅆ𝐴

1 2

1 1 1 1 2 2 2 2
ˆ ˆ

cs cs

Dm
dA dA

Dt
     

V
V V n V V n

V fluid velocity relative to cv



 
1 2

D m

Dt
  

V
F M M

Steady Control Volume Form of Newton’s Second Law

• What are the forces acting on the fluid in the 
control volume?

21 MMF 

𝐅 = W+ 𝐅𝑝1 + 𝐅𝑝2 + 𝐅𝑝𝑤𝑎𝑙𝑙
+ 𝐅𝜏𝑤𝑎𝑙𝑙

 Gravity

 Shear at the solid surfaces

 Pressure at the solid surfaces

 Pressure on the flow surfaces

Why no shear on control surfaces? _______________________________No velocity tangent to control surface



Linear Momentum Equation

𝐅 = W+ 𝐅𝑝1 + 𝐅𝑝2 + 𝐅𝑠𝑠

𝑚𝐚 = 𝐌1 +𝐌2

𝐌1 +𝐌2 = W+ 𝐅𝑝1 + 𝐅𝑝2 + 𝐅𝑠𝑠
The momentum vectors 

have the same direction 

as the velocity vectors

W
Fss

y

M2

Fp
1

Fp
2

M1

Fss
x

𝐌1 = − 𝜌𝑄 𝐕1

𝐌2 = 𝜌𝑄 𝐕2

Forces by solid surfaces on fluid



Reducing elbow in vertical plane with water flow of 300 L/s.
The volume of water in the elbow is 200 L. Energy loss is
negligible. Calculate the force of the elbow on the fluid.
W = 

section 1 section 2

D

A

V

p 

M

Fp

Example: Reducing Elbow

1

2

1 m

1 21 2 p p ss    M M F F FW
z

x
Direction of V vectors

0.196 m2 0.071 m2

1.53 m/s ↑ 4.23 m/s →

-459 N ↑ 1270 N →
29,400 N ↑

-ρg*volume=-1961 N ↑

?

?←

50 cm 30 cm

150 kPa



Example: What is p2?

𝑝1
𝛾1

+ 𝑧1 +
𝑉1
2

2𝑔
=
𝑝2
𝛾2

+ 𝑧2 +
𝑉2
2

2𝑔

𝑝2 = 𝑝1 + 𝛾 𝑧1 − 𝑧2 +
𝑉1
2

2𝑔
−
𝑉2
2

2𝑔

𝑝2 = 150 x 103Pa + 9810 N/m3 0 − 1 m+
1.53 m/s 2 − 4.23 m/s 2

2 9.8 m/s2

P2 = 132 kPa Fp2 = 9400 N



Example: Reducing Elbow Horizontal Forces

1 21 2 p p ss    M M F F FW

1 21 2ss p p    F M M F FW

xxx pss FMF
22 

   1270 9400
xssF N - N 

10.7kN
xssF 

Fluid is pushing the pipe to the ______left

z

x

Force of pipe on fluid

1

2 Fp
2

M2

1 21 2x x x x xss x p pF M M F F    W



Example: Reducing Elbow Vertical Forces

1 21 2z z z z zss z p pF M M F F    W

11z z zss z pF M F  W

   459N 1,961N 29,400N
zssF     

27.9 N
zssF k 

Pipe wants to move _________up

z

x
28 kN acting downward on fluid

1

2

Fp
1

M1

W



Moment of Momentum Equation

mB r×V

m

m


r×V
b

  ˆ

cs

dA T r×V V n

cv equation

Moment of momentum

Moment of momentum/unit mass

Steady state

ˆsys

cv cs

DB
bdV b dA

Dt t
 


  
   V n

 
  ˆ

cv cs

D m
dV dA

Dt t
 


  
  

r×V
r×V r×V V n

Munson Movies/V5_5 Angular momentum garden sprinkler.mov
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Turbomachinery

𝑇𝑧 = 𝜌𝑄 𝐫2 × 𝐕2 − 𝐫1 × 𝐕1

r2

r1

Vn
Vt

cs1 cs2

  ˆ

cs

dA T r×V V n
rVt Vn

 ˆ

cs

dA Q   V n



A jet of oil (RD = 0.80) issues from nozzle of 15 cm diameter with a velocity of 12 m/s. A smooth cone with
vertex angle of 90° deflects the jet. The jet is horizontal and the vertex of the cone points towards the jet.
Calculate the force required to hold the cone in position.

Practice Problem

Solution:

Consider a control volume as shown in fig. Let Rx = reaction
of the cone on the fluid in the control volume. The pressure
is everywhere atmospheric. As the cone is smooth, by
neglecting friction the velocity of the sheet of water over
the cone is V everywhere. The inclination of the velocity V
to axis is 90°/2 = 45°

A=
𝜋

4
× 0.15 2= 0.01767 m2 𝜌= 0.8 x 998 = 798.4 kg/m3

Q= AV = 0.01767 X 12 = 0.2121 m3/s



By momentum Equation in X- direction:

0- 𝑅𝑥 = ρQ (V cos 45°- V )

𝑅𝑥 = ρQV (1- cos 45°)

= 798.4 x 0.2121 x 12 x (1- cos 45°)

= 595 N

By symmetry, 𝑅𝑦 = 0

Hence, the resultant reaction force on the fluid R= 𝑅𝑥 . Thus the force required to 

hold the cone in position is F = R = 𝑅𝑥 =595 N long (- X) direction. 



Practice Problem
A pipeline is 15 cm in diameter and is at an elevation of 100.00 m at section A. At section B it is at

an elevation of 107.00 m and has a diameter of 30 cm. When a discharge of 50 L/s of water is

passed through this pipe the pressure at section A is observed to be 30 kPa. The energy loss in the

pipe is 2 m. Calculate the pressure at B when the flow is (i) from A to B and (ii) from B to A.



Solution:

Q = 0.05 m3/s

Let suffixes 1 and 2 refer to sections A and B respectively.

𝑉1 =
𝑄

𝐴1
=

0.05
𝜋
4 × (0.15)2

= 2.829 m/s

𝑉2 =
𝑄

𝐴2
=

0.05
𝜋

4
×(0.30)2

= 0.7074 m/s

γ = unit weight of water = 998 x 9.81/1000 = 9.79 kN/m3



(i) When the flow is from A to B: Taking the atmospheric pressure as zero

𝑝1
𝛾
+
𝑉1
2

2𝑔
+ 𝑍1 =

𝑝2
𝛾
+
𝑉2
2

2𝑔
+ 𝑍2 + 𝐻𝐿

30

9.79
+
(2.829)2

2 × 9.81
+ 100.00 =

𝑝2
𝛾
+
(0.7074)2

2 × 9.81
+ 107.0 + 2.0

3.064 + 0.4080 + 100.00 =
𝑝2

𝛾
+ 0.0255 + 107.0 + 2.0

𝑝2

𝛾
=—5.554 m gauge

𝑝2 = −5.554 x 9.79 =—54.37 kPa gauge



(ii) When the flow is from B to A: Taking atmospheric pressure as zero,

𝑝2
𝛾
+
𝑉2
2

2𝑔
+ 𝑍2 −𝐻𝐿 =

𝑝1
𝛾
+
𝑉1
2

2𝑔
+ 𝑍1

𝑝2
𝛾
+
(0.7074)2

2 × 9.81
+ 107.0 − 2.0 =

30

9.79
+
(2.829)2

2 × 9.81
+ 100.00

𝑝2

𝛾
+ 0.0255 + 107.0 − 2.0 = 3.064 + 0.4080 + 100.00

𝑝2

𝛾
=—1.554 m gauge

𝑝2 = −1.554 x 9.79 =—𝟏𝟓. 𝟐𝟏 𝐤𝐏𝐚 (𝐠𝐚𝐮𝐠𝐞)



A discharge of 0.06 𝒎𝟑/s flows through a horizontal bend as shown in fig. Calculate the force on the bolts in section 1.

Practice Problem

The control volume is shown in dotted lines. The Reaction on the control volume fluid is shown as Rx in

positive x- direction.

Discharge Q =
𝜋

4
x ( D2)

2 x V2= 0.06 m
3 /s

V2=
0.06

𝜋

4
x( 0.05)2

= 30.56 m/s V1= V2
𝐷2

𝐷1

2
=30.56 x

5

15

2
= 3.395 m/s



By applying Bernoulli equation to sections 2 and 1, by assuming the bend to be in horizontal plane,

0 +
(30.56)2

2 𝑥 9.81
=

𝑃1

𝛾
+

(3.395)2

2 𝑥 9.81
…..(𝑃2 = atmospheric)

𝑃1

𝛾
= 47.59 – 0.59 = 47.00 m

𝑃1= 47.00 X 9.79 = 460.2 kPa

By momentum equation in the x- direction, 

−𝑃1𝐴1+ 𝑅x – 0  = 𝜌Q ( V2 - (-V1))

−(460.2 x 103) x 
𝜋

4
x ( 0.15)2 + 𝑅x = 998 x 0.06 x(30.56 + 3.395) 

𝑅x = 8132 +2033 =10165 N

The force F exerted by  the fluid  on the pipe and hence on the bolts in section 1, is equal and 

opposite to Rx .Thus F = 10165 N and acts to left , i.e., in the negative x-direction , as a pull  (tension ) 

on the joint.



Practice Problem
A 7.5 cm diameter water jet having a velocity of 12 m/s impinges on a plane, smooth plate at an

angle of 60° to the normal to the plate. What will be the impact force when (i) the plate is stationary

and (ii) when moving in the direction of the jet at 6 m/s. Estimate the work done per unit time on the

plate in each case.

Solution: Consider the normal and tangential

directions and a control volume as shown in Fig . Let 𝑅𝑛

be the normal reaction on the fluid in the control

volume. Consider the normal direction n. The pressure

in the jet is atmospheric.



The normal force of the jet on plate is 𝑭𝒏 = 317.45 N in the positive n direction (opposite to Rn).

(ii) When the plate moves in the x-direction with u = 6 m/s.

Considering normal direction and relative velocities:

—Rn = 𝜌Qr (0 —V1𝑟 cos 𝜃 )

Rn = 𝜌A V1𝑟
2 cos 𝜃

V1𝑟 =12.0 - 6.0 = 6.0 m/s

Rn = 998 x
𝜋

4
× (0.075)2× 62 x cos 60°

= 79.36 N

(i) When the plate is stationary:
0—Rn = 𝜌Q (0 — VI cos 𝜃)
Rn = 𝜌QVI cos 𝜃

= 998 x 
𝜋

4
𝑋 (0.075)2 𝑋 12 x 12 cos 60° = 317.45 N



The normal force of the water jet on the plate 𝐹𝑛 will be equal and opposite to Rn.

Hence Fn = 79.36 N and acts in positive n direction.

Work done W = Fn x un= Fn cos 60° x u

In case (i) u = 0 , W=0

(ii) u = 6 m/s,

W= 79.36 x 0.5 x 6.0

= 238.08 N.m/s


