

Hydraulics Prof. Mohammad Saud Afzal Department of Civil Engineering

Dimensions and Units

• The dimensions have to be the same for each term in an equation

T

 Θ

- Dimensions of mechanics are
	- length \Box
	- time
	- mass
	- force
	- temperature

Dimensions and Units

Dimensions and Units

Definition of a Fluid

- "a fluid, such as water or air, deforms continuously when acted on by shearing stresses of any magnitude."
	- *Young, Munson, Okiishi*

Density and Specific Weight

- Density (mass/unit volume) ρ Specific mass
	- density of water: 1000 kg/m^3
	- density of air at atmospheric pressure and 15 °C
- Specific Weight of water (weight per unit volume) γ
	- \bullet 1.22 kg/m^3

 $\gamma = \rho g = 9806 \text{ N/m}^3$

Fluid Deformation between Parallel Plates

 $\overline{\mathrm{F}} = \mu$

t

AU

Force F causes the top plate to have velocity U. What other parameters control how much force is required to get a desired velocity?

If this parameter increases, what does F do?

Shear Stress

Fluid Viscosity

- Examples of highly viscous fluids ______________________________ molasses, tar, 20w-50 oil, glycerin
- Fundamental mechanism
	- Gases transfer of molecular momentum
		- Viscosity increases as temperature increases.
		- Viscosity increases as pressure increases.
	- Liquids cohesion and momentum transfer
		- Viscosity decreases as temperature increases.
		- Relatively independent of pressure (incompressible)

Example: Measure the viscosity of water

The inner cylinder is 10 cm in diameter and rotates at 10 rpm. The fluid layer is 2 mm thick and 20 cm high. The power required to turn the inner cylinder is 100x10-6 watts. What is the dynamic viscosity of the fluid?

$$
\tau = \mu \frac{du}{dy} \qquad \qquad F = \mu \frac{AU}{t}
$$

Viscosity Measurement: Solution

Outer-

cylinder

Inner

Thin layer of water

cylinder

$$
F = \mu \frac{AU}{t}
$$

\n
$$
U = \text{or} \qquad A = 2\pi rh
$$

\n
$$
\omega = \frac{10rev}{\text{min}} \frac{2\pi rad}{rev} \frac{\text{min}}{60s} = 1.047 \text{ rad/s} \qquad t = 2 \text{ mm}
$$

\n
$$
F = \mu \frac{2\pi \omega r^2 h}{t}
$$

\n
$$
F = \text{For}
$$

\n
$$
P = \text{For}
$$

\n
$$
P = \mu \frac{2\pi \omega^2 r^3 h}{t}
$$

\n
$$
\mu = \frac{Pt}{2\pi \omega^2 r^3 h}
$$

\n
$$
m = \frac{(100x10^{-6} \text{W})(0.002 \text{ m})}{2p(1.047/\text{s})^2(0.05 \text{ m})^3(0.2 \text{ m})} = 1.16x10^{-3} \text{ N} \cdot \text{m}^2
$$

Role of Viscosity

- Statics
	- Fluids at rest have no relative motion between layers of fluid and thus $du/dy = 0$
	- Therefore the shear stress is **Zero** and is independent of the fluid viscosity

• Dynamics

- Fluid viscosity is very important
	- when the fluid is moving

Dynamic and Kinematic Viscosity

• Kinematic viscosity (nu) is a fluid property obtained by dividing the dynamic viscosity (mu) by the fluid density

$$
v = \frac{\mu}{\rho} \qquad v = \frac{\left[\frac{\text{kg}}{\text{m} \cdot \text{s}}\right]}{\left[\frac{\text{kg}}{\text{m}^3}\right]} \quad \frac{\text{m}^2/\text{s}}{\text{s}}
$$

Connection to Reynolds number! Re

The velocity distribution in a viscous flow over a plate is given by

 $u = 4y$ y^2 for $y \le 2$ m

where $u =$ velocity in m/s at a point distant y from the plate. If the coefficient of dynamic viscosity is 1.5 Pa.s determine the shear stress at $y = 0$ and at $y =$ 2.0 m.

A 90 N rectangular solid block slides down a 30˚ inclined plane. The plane is lubricated by a 3 mm thick film of oil of relative density 0.90 and viscosity 8.0 poise. If the contact area is 0.3 m² , estimate the terminal velocity of the block.

Hydraulic Engineering Prof. Mohammad Saud Afzal Department of Civil Engineering

Perfect Gas Law

- \bullet PV = nRT
	- R is the universal gas constant
	- T is in Kelvin

 $R = 8.314 \frac{Nm}{mol K}$ $R_{text} = \frac{R}{M_{gas}}$ *Mgas* is molecular mass *Mgas* for air is 0.029 kg/mole Why is this *Mgas* for air reasonable $N₂$ 28 g/mol, O₂ 32 g/mol

Bulk Modulus of Elasticity

- Relates the change in volume to a change in pressure
- changes in density at high pressure
	- pressure waves
		- <u>Sound</u>
		- Water hammer

/ $E_v = -\frac{dp}{d\Omega}$ $d{\cal V}$ / ${\cal V}$ $=$ $-$

 $Pv = Constant$

On differentiation we get

 $E_v = \frac{dp}{d\rho_{\text{p}}}$

$$
Pdv + vdp = 0
$$

 $\frac{dp}{dv}$

$$
= -\frac{p}{v}
$$
 Hence $E_v = -v(-\frac{p}{v})$ $E_v = p$

How much does water compress?

$$
\frac{dV}{V} = -\frac{dp}{E_v}
$$

Bulk Modulus of Elasticity

Compression and Expansion of Gases: What is *E^v* ?

• Isothermal (constant temperature)

Where, $p = absolute pressure$ $v = specific volume$

Compression and Expansion of Gases: What is *E^v* ?

•Isentropic (no heat exchanged)

Speed of Sound (c)

$$
c = \sqrt{\frac{dp}{d\rho}} \quad \text{and} \quad E_v = \frac{dp}{d\rho/\rho}. \text{ Solve for } \frac{dp}{dr} = \frac{E_v}{\rho} = \frac{dp}{d\rho}
$$

$$
c = \sqrt{\frac{E_v}{\rho}} \qquad c \text{ is large for difficult to compress fluids}
$$

Vapour Pressure

Surface Tension

Surface Tension (N/m) Surface tension (N/m)0.080 Surface tension 0.075 0.070 0.065 0.060 0.055 0.050 0 20 40 60 80 100 Temperature (C)

Example: Surface Tension

• Estimate the difference in pressure (in Pa) between the inside and outside of a bubble of air in 20ºC water. The air bubble is 0.3 mm in diameter. $\sigma = 0.073$ N/m, R = 0.15×10^{-3} m

$$
Dp = \frac{2s}{R} \qquad Dp = \frac{2(0.073N/m)}{0.15x10^{-3}m}
$$

$$
Dp = 970 \text{ Pa}
$$

What is the difference between pressure in a water droplet and pressure in an air bubble?

Review: Fluid Properties

- Viscosity
- Density and Specific Weight *dy*
- Elasticity
- Vapor Pressure
- Surface Tension

$$
E_{\nu} = \frac{dp}{d\rho/\rho} \quad c = \sqrt{\frac{E_{\nu}}{\rho}}
$$

$$
\Delta p = \frac{2\sigma}{R}
$$

du

 $\tau = \mu$

In an experiment, the tip of a glass tube with an internal diameter of 2.0 mm is immersed to a depth of 1.50cm in to a liquid of specific gravity 0.85. Air is forced in to the tube to form a spherical bubble just at the lower end of the tube. Estimate the surface tension of the liquid if the air pressure in the bubble is 200 N/m²

A very small quantity of a liquid having a surface tension σ forms a circular spot of diameter D between two glass plates separated by a small distance h. Obtain an expression for the force required to pull the plates apart.

Air at 20°C and 200 kPa (abs) contained in a cylinder is compressed to half its volume. Find the pressure and temperature inside the cylinder if the process is (a) isothermal, and (b) isentropic with k = 1.4

The velocity of propagation of sound in air is calculated by assuming the process to be isentropic. What is the velocity of sound at 80°C?

