

Hydraulics Prof. Mohammad Saud Afzal Department of Civil Engineering

Dimensions and Units

- The dimensions have to be the same for each term in an equation
- Dimensions of mechanics are
 - length
 - time
 - mass
 - force
 - temperature

Θ

Dimensions and Units

Symbol	Dimensions	
V	LT ⁻¹	
а	LT ⁻²	
А	L ²	
\forall	L ³	
Q	L ³ T ⁻¹	
р	ML ⁻¹ T ⁻²	
g	LT ⁻²	Show
T'	Θ	this!
С	ML ⁻³	
	Symbol V a A ∀ Q Q p g T' C	SymbolDimensionsV LT^{-1} a LT^{-2} A L^2 \forall L^3 Q L^3T^{-1} p $ML^{-1}T^{-2}$ g LT^{-2} T' Θ C ML^{-3}

Dimensions and Units

<u>Quantity</u>	Symbol	Dimensions	
Density	ρ	ML ⁻³	
Specific Weight	(γ)	ML ⁻² T ⁻²	
Dynamic viscosity (m)	μ	ML ⁻¹ T ⁻¹	$\gamma = \rho g$
Kinematic viscosity(n)	(v)	L ² T ⁻¹	222
Surface tension	σ	MT ⁻²	$n = \frac{m}{m}$
Bulk mod of elasticity	E	ML ⁻¹ T ⁻²	ρ
These are <u>fluid</u> pro	perties!		
How many independent prop	perties? 4		

Definition of a Fluid

- "a fluid, such as water or air, deforms continuously when acted on by shearing stresses of any magnitude."
 - Young, Munson, Okiishi

Why isn't steel a fluid?

Density and Specific Weight

- Density (mass/unit volume) ρ <u>Specific mass</u>
 - density of water: <u>1000 kg/m³</u>
 - density of air at atmospheric pressure and 15 °C
- Specific Weight of water (weight per unit volume) γ
 - 1.22 kg/m³

 $\gamma = \rho g = 9806 \text{ N/m}^3$

Fluid Deformation between Parallel Plates

 $F = \mu$

Force F causes the top plate to have velocity U. What other parameters control how much force is required to get a desired velocity?

If this parameter increases, what does F do?

Distance between plates (t)
Area of plates (A)
Viscosity! (II)

Shear Stress

Fluid Viscosity

- Examples of highly viscous fluids molasses, tar, 20w-50 oil, glycerin
- Fundamental mechanism
 - Gases transfer of molecular momentum
 - Viscosity <u>increases</u> as temperature increases.
 - Viscosity <u>increases</u> as pressure increases.
 - Liquids cohesion and momentum transfer
 - Viscosity <u>decreases</u> as temperature increases.
 - Relatively independent of pressure (incompressible)

Example: Measure the viscosity of water

The inner cylinder is 10 cm in diameter and rotates at 10 rpm. The fluid layer is 2 mm thick and 20 cm high. The power required to turn the inner cylinder is 100x10⁻⁶ watts. What is the dynamic viscosity of the fluid?

$$\tau = \mu \frac{du}{dy} \qquad F = \mu \frac{AU}{t}$$

Viscosity Measurement: Solution

Outer

cylinder

Inner

Thin layer of water

cylinder

$$F = \mu \frac{AU}{t} \qquad U = \omega r \qquad A = 2\pi rh$$

$$\omega = \frac{10rev}{\min} \frac{2\pi rad}{rev} \frac{\min}{60s} = 1.047 rad / s \qquad r = 5 cm$$

$$t = 2 mm$$

$$h = 20 cm$$

$$P = 100 \times 10^{-6} W$$

$$10 rpm$$

$$P = For$$

$$P = \mu \frac{2\pi \omega^2 r^3 h}{t} \qquad \mu = \frac{Pt}{2\pi \omega^2 r^3 h}$$

 $m = \frac{(100x10^{-6} \text{W}) (0.002 \text{ m})}{2p (1.047/\text{s})^2 (0.05 \text{ m})^3 (0.2 \text{ m})} = 1.16x10^{-3} \text{ N} \times \text{s/m}^2$

Role of Viscosity

- Statics
 - Fluids at rest have no relative motion between layers of fluid and thus du/dy = 0
 - Therefore the shear stress is <u>Zero</u> and is independent of the fluid viscosity

• Dynamics

- Fluid viscosity is very important
 - when the fluid is moving

Dynamic and Kinematic Viscosity

• Kinematic viscosity (<u>nu</u>) is a fluid property obtained by dividing the dynamic viscosity (<u>mu</u>) by the fluid density

$$v = \frac{\mu}{\rho} \qquad v = \frac{\left[\frac{kg}{m \cdot s}\right]}{\left[\frac{kg}{m^3}\right]} \quad \underline{[m^2/s]}$$

Connection to Reynolds number! $Re = \frac{\rho VD}{\mu} = \frac{VD}{\nu}$

The velocity distribution in a viscous flow over a plate is given by

 $u = 4y - y^2$ for $y \le 2$ m

where u = velocity in m/s at a point distant y from the plate. If the coefficient of dynamic viscosity is 1.5 Pa.s determine the shear stress at y = 0 and at y = 2.0 m.

A 90 N rectangular solid block slides down a 30° inclined plane. The plane is lubricated by a 3 mm thick film of oil of relative density 0.90 and viscosity 8.0 poise. If the contact area is 0.3 m², estimate the terminal velocity of the block.

Hydraulic Engineering Prof. Mohammad Saud Afzal Department of Civil Engineering

Perfect Gas Law

- PV = nRT
 - R is the universal gas constant
 - T is in Kelvin

 $R = 8.314 \ \frac{Nm}{mol \ K}$ $R_{text} = \frac{R}{M_{gas}}$ M_{gas} is molecular mass M_{gas} for air is 0.029 kg/mole Why is this M_{gas} for air reasonable N₂ 28 g/mol, O₂ 32 g/mol

Bulk Modulus of Elasticity

- Relates the change in volume to a change in pressure
- changes in density at high pressure
 - pressure waves
 - <u>Sound</u>
 - <u>Water hammer</u>

 $E_v = -\frac{dp}{d\Psi/\Psi}$

Pv = Constant

On differentiation we get

 $E_{\nu} = \frac{dp}{d\rho/}$

$$\frac{dp}{dv} = -\frac{p}{v}$$
 Hence $E_v = -v \left(-\frac{p}{v}\right)$ $E_v = p$

How much does water compress?

$$\frac{d\Psi}{\Psi} = -\frac{dp}{E_{y}}$$

Bulk Modulus of Elasticity

Compression and Expansion of Gases: What is E_{v} ?

Isothermal (constant temperature)

Where, p = absolute pressure v = specific volume

Compression and Expansion of Gases: What is E_{v} ?

Isentropic (no heat exchanged)

Speed of Sound (c)

$$c = \sqrt{\frac{dp}{d\rho}} \text{ and } E_{\nu} = \frac{dp}{d\rho/\rho} \text{ . Solve for } \frac{dp}{dr} \qquad \frac{E_{\nu}}{\rho} = \frac{dp}{d\rho}$$
$$c = \sqrt{\frac{E_{\nu}}{\rho}} \qquad c \text{ is large for difficult to compress fluids}$$

Vapour Pressure

Surface Tension

Surface Tension (N/m)0.080 Surface tension 0.075 0.070 0.065 0.060 0.055 0.050 80 100 20 40 60 () Temperature (C)

Example: Surface Tension

• Estimate the difference in pressure (in Pa) between the inside and outside of a bubble of air in 20°C water. The air bubble is 0.3 mm in diameter. $\sigma = 0.073 \text{ N/m}$, $R = 0.15 \times 10^{-3} \text{ m}$

$$Dp = \frac{2s}{R} \qquad Dp = \frac{2(0.073N/m)}{0.15x10^{-3}m}$$
$$Dp = 970 \text{ Pa}$$

What is the difference between pressure in a water droplet and pressure in an air bubble?

Review: Fluid Properties

- Viscosity $au = \mu \frac{du}{dy}$ Density and Specific Weight
- Elasticity
- Vapor Pressure
- Surface Tension

$$E_{\nu} = \frac{dp}{d\rho/\rho} \quad c = \sqrt{\frac{E_{\nu}}{\rho}}$$

$$\Delta p = \frac{2\sigma}{R}$$

In an experiment, the tip of a glass tube with an internal diameter of 2.0 mm is immersed to a depth of 1.50cm in to a liquid of specific gravity 0.85. Air is forced in to the tube to form a spherical bubble just at the lower end of the tube. Estimate the surface tension of the liquid if the air pressure in the bubble is 200 N/m²

A very small quantity of a liquid having a surface tension σ forms a circular spot of diameter D between two glass plates separated by a small distance h. Obtain an expression for the force required to pull the plates apart.

Air at 20°C and 200 kPa (abs) contained in a cylinder is compressed to half its volume. Find the pressure and temperature inside the cylinder if the process is (a) isothermal, and (b) isentropic with k = 1.4

The velocity of propagation of sound in air is calculated by assuming the process to be isentropic. What is the velocity of sound at 80°C?

