INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR				
Instructor: Prof Mohammad Saud Afzal				
Department of Civil Engineering				
Course: CE21003				
Date: 10/01/2020				
Total Marks: NA				

Properties of Fluid

Q1) A thin plate is placed between two flat surfaces h cm apart such that the viscosity of liquids on the top and bottom of the plate are μ_1 and μ_2 , respectively. Determine the position of the thin plate such that the viscous resistance to uniform motion of the thin plate is (a) minimum (b) equal on both sides.

[Assume h to be very small].

Fluid	Parameter	Values in Units			
A	Shear rate= $\frac{\partial u}{\partial y} = 0$	0.5	1.0	1.5	2.0
	Shear stress = $\tau = 0$	1.0	2.0	3.0	4.0
В	Shear rate= $\frac{\partial u}{\partial y} = 0$	0.50	1.0	1.5	2.0
	Shear stress = $\tau = 0$	2	3	4	5
С	Shear rate= $\frac{\partial u}{\partial y} = 0$	0.50	1.0	1.5	2.0
	Shear stress = $\tau = 0$	0.59	1.0	1.36	1.7
D	Shear rate= $\frac{\partial u}{\partial y} = 0$	0.50	1.0	1.5	2.0
	Shear stress = $\tau = 0$	0.35	1.0	1.84	2.83
Е	Shear rate= $\frac{\partial u}{\partial y} = 0$	0.50	1.0	1.5	2.0
	Shear stress = $\tau = 0$	0	0	0	0

Q2) Classify the fluids A to D based upon the following results of a test on their rheological behavior:

- Q3) A plate 0.025 mm distant from a fixed plate, moves at 60 cm/s and requires a force of 2 N per unit area i.e., 2 N/m² to maintain this speed. Determine the fluid viscosity between the plates.
- Q4) Derive an expression for relation between pressure and surface tension for: -

a) water droplet.

b) soap bubble.

Q5) Calculate the dynamic viscosity of an oil, which is used for lubrication between a square plate of size 0.8 m x 0.8 m and an inclined plane with angle of inclination 30°. The weight of the square plate is 300 N and it slides down the inclined plane with a uniform velocity of 0.3 m/s. The thickness of oil film is 1.5 mm.