
BISON
IST-2001-38923

Biology-Inspired techniques for
Self Organization in dynamic Networks

Readme for immune search package (peersim based
implementation)

Classification: Public
Contact Author: Niloy Ganguly
email: niloy@zhr.tu-dresden.de
Document Version: 1.0 (February 25, 2005)

Project funded by the
European Commission under the
Information Society Technologies
Programme of the 5th Framework

(1998-2002)



Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

Contents

1 Implementation details - peersim-based isearch package 3

1.1 Configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Initializers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Basic data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Software package details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2



Readme for immune search package (peersim based implementation) (1.0)

1 Implementation details - peersim-based isearch package

The implementation of the search algorithm can be roughly divided into the following steps.

• Initialization of the p2p network.

• Determination of the desired experiment (either coverage or time-step). This includes
both the output as well as the exit condition.

• The algorithm(s) to be executed.

The peersim simulation environment comprises of cycles where at each cycle protocols are run
and observers collect information after every cycle. Moreover, there are initializers to initiate the
protocols. The protocols, initializers and observers are used to simulate the above mentioned
steps of the search algorithm. The initializers are used to instantiate the p2p network. [Note,
here we are reporting only the implementation of simple data/query types.] Since peersim is
cycle based and runs for a specified number of cycles, the experiments (coverage or time-step)
are not distinguished here. Rather, coverage is run for an arbitrary large number of time steps,
so that it is ensured that all nodes are covered. The observer consequently outputs the same
output for both experiments. Later the output is further analyzed in an excel worksheet to
derive the final results.

We outline the implementation of initializers, protocols and observers and also the basic data
structure. However, to provide the idea, how our code interacts with the peersim core code, we
at first explain the input peersim configuration files which are customized to suit the purposes
of the immune search scheme.

1.1 Configuration file

To run a search algorithm, a suitable peersim configuration file is needed. In the following we
present the configuration file and go on explaining the inputs. (Note : if a line starts with #, it
is a comment line)

1 # PEERSIM EXAMPLE iSEARCH
2 random.seed 1264967890
3 simulation.cycles 21
4 simulation.shuffle
5
6 overlay.size 10000
7
8 protocol.0 example.isearch.RProliProtocol
9 protocol.0.ttl 50
10 protocol.0.walkers 10
11
12 init.0 peersim.dynamics.AnyTopology
13 init.0.protocol 0
14 init.0.filename TestP4_sorted

3



Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

15
16 init.1 example.isearch.SearchDataInitializer
17 init.1.protocol 0
18 init.1.max_queries 100
19 init.1.data_zipf 1.0
20 init.1.query_zipf 1.0
21 init.1.keywordsWidth 10
22
23 observer.0 example.isearch.SearchObserver
24 observer.0.protocol 0
25 observer.0.verbosity 0

Line 2 to 6 - Global peersim configuration
Lines from 2 to 6 regard the global peersim configuration, such as the seed for the random
number generator, the number of simulation cycles to perform, the node shuffle switch (to
avoid picking nodes in the same order at each cycle) and the network size. Line 3 showing the
number of simulation cycles to be performed is not needed for running the search algorithm, it
is just a part of the historical code of peersim.

Line 8 to 10 - Protocol
The protocol actually represents different algorithms (random walk, proliferation etc.) we run.
Here, in the configuration file, we define the random walk protocol (lines 8 to 10). The ttl
parameter defines the number of time steps a particular search item will run. Since, in peersim,
the two experiments, time-step and coverage, are not separately executed; here for running the
experiment coverage, the ttl is to be set to an arbitrary large value, so that all the peers are
ultimately covered. The walkers define the number of message packages initially used to
start an experiment.

Line 12 to 21 - Initializers
The first initializer (lines from 12 to 14) defines the topology. The topology can be simply read
from a file containing information of connections between nodes. The topology file is named
in the 14

th line.

The second initializer (lines from 16 to 21) defines the way key repository and the query dis-
tribution are to be initialized at each node. The parameters are max queries - the number of
query operations performed for experiment; data zipf and query zipf - the Zipf’s coefficient
for data and query, respectively; keywordsWidth - the width of the token used for query. (Since
we are working with simple data sets, each data or token is k bits wide and we have 2

k unique
tokens.)

Line 23 to 25 - Observers
Finally, the observer is defined from line 24 to 26. The observers output the result at the end
of search of each individual cycle or at the completion of a single search operation (defined by
verbosity - line 25).

The protocol, initializers and observers are explained one by one.

4



Readme for immune search package (peersim based implementation) (1.0)

1.2 Protocol

As mentioned protocols essentially implement the algorithms - random walk and proliferation,
both their normal and restricted version. All the protocols have some common basic services.
An abstract class SearchProtocolprovides a first common implementation of those services;
all isearch protocols are supposed to inherit from this class.

Usually, each protocol is made of two distinct parts: active and passive; the former represents
the pro-active behavior (e.g.: nodes inject queries into the system according to a predefined
distribution), and the latter reacts to the incoming messages according to the specific protocol
behavior. send and forward are the common metaphors used to provide these behaviors. The
match function returns the amount of match between the contents of the node and the content
of the incoming token. Each node therefore performs the work of send and forward at each cycle
through the function nextcycle.

Individual protocols on top of the framework

Each distinct protocol, random walk (RW ), restricted random walk (RRW ), proliferation (Proli)
and restricted random walk (RProli), extends the basic SearchProtocol and customizes the
program according to its underlying guiding algorithm. An example of restricted random walk
will clarify this.

A restricted random walk differs from the simple random walk only in the strategy with which
a neighbor is chosen. The node neighbors are probed to find a candidate which has never seen
before the message that is going to be sent. If there isn’t such a candidate, then a random node
is chosen as in the random walk protocol. An outline of the RRWprotocol class which extends
the standard version (RWProtocol) is given below.

public class RRWProtocol extends RWProtocol {
public RRWProtocol(String prefix, Object obj) {

super(prefix, obj);
}

public void process(SMessage mes) {
// checks for hits and notifies originator if any:
boolean match = this.match(mes.payload);
if (match) this.notifyOriginator(mes);

// forwards the message to a random FREE neighbor:
Node neighbor = this.selectFreeNeighbor(mes);
this.forward(neighbor, mes);

}
}

The only difference between random walk and restricted random walk is the way theprocess()
method adopts to forward the messages. A specific function (selectFreeNeighbor()mem-

5



Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

ber function of the basic SearchProtocol class) supports the restricted protocol version and
chooses a neighbor according to the restricted strategy.

1.3 Initializers

In peersim - the model initializers -the topology and the distributions are attached to a specific
protocol, here the search protocol.

1.4 Observers

The generation of the query statistic is made by a peersim observer interface object. At the end
of each cycle the observer runs and collects the data about the packets stored at each node and
generates statistics. At the end of each cycle or at the end of the whole simulation, the observer
generates the following data tuples about query packets:













queryID

message TTL

number of nodes the query has visited

number of successful hits

total number of message packets used for this query













The observer produces an output at the end of each cycle when verbosity = 1. Below we show
a sample output of the 7

th and 8
th query items while running Proliprotocol. The number

of time steps (ttl) to be executed is 50.

.

.

.
7 46 5415 723 7570
7 47 5718 778 8331
7 48 6001 808 9106
7 49 6286 840 9896
8 0 1 0 1
8 1 2 0 2
8 2 3 0 3
8 3 6 2 6
.
.
.

If the verbosity = 0, the output is shown at the end of each search operation, The sample output
shows the output produced by the 30

th to 34
th query items while running Proliprotocol.

The ttl here is 50.

.

6



Readme for immune search package (peersim based implementation) (1.0)

.

.
30 49 38 0 63
31 49 780 56 13243
32 49 161 1 989
33 49 328 7 3475
34 49 240 2 385
.
.
.

We now give a brief outline of the data structure used by each node which has enabled us to
produce the desired output.

1.5 Basic data structure

To run the above mentioned initializers, observers and protocols on the network, the data struc-
tures needed by each node in the infrastructure are the following:

• messageTable: hashtable that maps a packet to an integer; it represents the number of
times the current node has seen this packet before.

• hitTable: hashset that stores the packets for which the current node reports a query hit.

• incomingQueue: list that buffers the incoming packets; it is accessed in a FIFO fashion.

• view: the current node neighbor list view. It is managed by the linkable interface meth-
ods. (Linkable interface method is a facility provided by peersim).

• keyStorage: hashmap mapping a key to an integer; the latter represents the frequency of
the key.

• queryDistro: treeset mapping integers to key array; the former represents the cycle in
which the query is scheduled and the latter represents the packet query payload.

1.6 Software package details

The peersim simulation platform is available for download from http://peersim.sourceforge.org/.
The isearch software should be installed into the exampledirectory of the peersim installation.
It contains the java files; also various configuration files in subdirectory powerLaw, grid and
randgraph Moreover, the file AnyTopology.java should be installed in the peersim/dynamics
directory and the file Simulator.java to be installed in peersim/cdsim.

However, one can download the entire package (peersim + search) with all the files pre-arranged
from the BISON website. Our software consists of peersim configuration files, topology data
files, and Java source code files. The source files are located in subdirectories.

To run the config file, assuming the peersim classes presence in the CLASSPATH, just type:

7



Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

java peersim.Simulator <path-to-configfile>/config-isearch.txt

where config-isearch.txt is a peersim configuration file.

An example command which can be directly run when the package is downloaded

java peersim.Simulator example/isearch/randgraph/config-rrw-rproli.txt

8


