
Chapter 4

The Earth Mover's Distance

(EMD)

A very general distance measure with applications in content-based image retrieval is the

Earth Mover's Distance (EMD) between distributions ([68]). The EMD has been suc-

cessfully used in a common framework for measuring image similarity with respect to

color ([69, 67, 65, 68]) and texture ([69, 68, 66]). In this framework, the summary or

signature of an image is a �nite collection of weighted points. For example, in [69] the

color signature of an image is a collection of dominant image colors in the CIE-Lab color

space ([88]), where each color is weighted by the fraction of image pixels classi�ed as that

color. In [69], the texture signature of a single texture image is a collection of spatial

frequencies in log-polar coordinates, where each frequency is weighted by the amount of

energy present at that frequency. To complete the uniform framework, a distance measure

on weight distributions is needed to measure similarity between image signatures.

The Earth Mover's Distance (EMD) between two distributions is proportional to the

minimum amount of work required to change one distribution into the other. Here one unit

of work is de�ned as the amount of work necessary to move one unit of weight by one unit of

distance. The distance measure between weight locations is known as the ground distance.

The morphing process between equal-weight distributions can be visualized as weight 
owing

from one distribution to the other until the distributions are identical. Figures 4.1(a)-(c)

and 4.2(a)-(c) illustrate the minimum work morphing for three di�erent pairs of equal-weight

distributions.

In chapter 2, we used mass instead of weight in our EMD description because the EMD

optimization problem was originally called the mass transfer problem. We consider the two

terms interchangeable, although our notation given in the next section corresponds better
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(a) (b) (c) (d)

Figure 4.1: Example Distributions in 2D. Each of the examples (a), (b), (c), and (d) shows

two distributions, one whose points are centered at the red discs and one whose points are

centered at the blue discs. The area of a disc is equal to the weight at its center point in the

distribution. The pairs (a), (b), and (c) are equal-weight pairs. In (d), the red distribution

is lighter than the blue distribution. This example is the same as (b) with one of the red

weights removed.

with weight, and in physics the units of weight � distance are the same as the units for

work. On the other hand, mass corresponds better with the term Earth Mover's Distance.

This name was suggested by Jorge Stol� ([76]) who got the idea from some CAD programs

for road design which have a function that computes the optimal earth displacement from

roadcuts to road�lls.

An important property of the EMD is that it allows partial matching. When the total

weights of the distributions are unequal, the EMD requires all the weight in the lighter

distribution to be matched to weight in the heavier distribution. Some weight in the heav-

ier distribution, however, will not be matched to weight in the lighter distribution. The

matching process between unequal-weight distributions can be visualized as a 
ow in two

di�erent ways: (i) weight 
ows from the lighter distribution to the heavier distribution

until the lighter distribution becomes a sub-distribution of the heavier one, or (ii) weight


ows from the heavier distribution to the lighter distribution until all the weight in the

lighter distribution has been covered. A type (i) 
ow visualization for the unequal-weight

distributions in Figure 4.1(d) is shown in Figure 4.2(d).

The EMD matching process can also be visualized as �lling holes with piles of dirt. The

holes are located at the points in the lighter distribution, and the dirt piles are located at the

points in the heavier distribution. The volume of a hole or dirt pile is given by the weight

value of its position. In the equal-weight case, either distribution can be used to de�ne the

dirt piles or the holes, and all the dirt is needed to �ll the holes. In the unequal-weight

case, there is dirt leftover once all the holes are �lled.

In the next section, we give the formal de�nition of the Earth Mover's Distance and

discuss some of its properties. The work minimization problem which de�nes the EMD is a
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(a)

(b)

(c)

(d)

Figure 4.2: The EMD Morphing Process. Here we show the least work morphing for the

equal-weight examples (a), (b), (c), and the unequal-weight example (d) in Figure 4.1.

Weight 
ows from the red distributions to matching weight in the blue distributions. The

amount of work done between frames is the same for every pair of adjacent frames shown

(except possibly between the last two frames in each sequence). The EMD is smaller between

pair (a) than pair (b), and smaller between pair (b) than pair (c). In (d), some of the blue

weight is not matched to any red weight.
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type of linear program known as the transportation problem. We discuss the transportation

problem and its connection to the EMD in section 4.2. In section 4.3, we consider some

special cases of matching (i) distributions which de�ne ordinary point sets (section 4.3.1),

and (ii) equal-weight distributions on the real line (section 4.3.2). In section 4.4, we give

a couple of modi�cations to the EMD which make it more amenable to partial matching.

In section 4.4.1, we present the partial EMD which forces only some fraction of the weight

of the lighter distribution to be matched. In section 4.4.2, we discuss the � -EMD which

measures the amount of weight that cannot be matched if we only allow weight to 
ow

over ground distances that do not exceed � . Finally, in section 4.5 we use the EMD to

estimate the size at which a color pattern may appear within an image. Please refer back

to section 2.3 for a comparison of the EMD and bin-to-bin histogram distance measures.

4.1 Basic De�nitions and Notation

We denote a discrete, �nite distribution x as

x = f (x1; w1); : : : ; (xm; wm) g � (X;w) 2DK;m

where X = [ x1 � � � xm ] 2 RK�m and wi � 0, for all i = 1; : : : ; m. Here K is the dimension

of ambient space of the points xi 2 RK , and m is the number of points. The (total) weight

of the distribution x is w� =
Pm
i=1 wi. Given two distributions x = (X;w) 2 DK;m and

y = (Y; u) 2 DK;n, a 
ow between x and y is any matrix F = (fij) 2 Rm�n . Intuitively,

fij represents the amount of weight at xi which is matched to weight at yj . The term 
ow

is meant to evoke the image of weight 
owing from the points in the heavier distribution to

the points in the lighter distribution until all the weight in the lighter distribution has been

covered. If one distribution is known to be heavier than the other, then we shall write that

a 
ow is from the heavier distribution to the lighter distribution. The 
ow F is a feasible


ow between x and y i�

fij � 0 i = 1; : : : ; m; j = 1; : : : ; n; (4.1)
nX
j=1

fij � wi i = 1; : : : ; m; (4.2)

mX
i=1

fij � uj j = 1; : : : ; n; and (4.3)

mX
i=1

nX
j=1

fij = min(w�; u�): (4.4)
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Constraint (4.1) requires the amount of xi matched to yj to be nonnegative. Constraint (4.2)

ensures that the weight in y matched to xi does not exceed wi. Similarly, (4.3) ensures that

the weight in x matched to yj does not exceed uj . Finally, constraint (4.4) forces the total

amount of weight matched to be equal to the weight of the lighter distribution.

Let F(x;y) denote the set of all feasible 
ows between x and y. The work done by a

feasible 
ow F 2 F(x;y) in matching x and y is given by

WORK(F;x;y) =
mX
i=1

nX
j=1

fijdij ;

where dij = d(xi; yj) is the distance between xi and yj . An example ground distance is the

Euclidean distance d(xi; yj) = jjxi�yj jj2. The Earth Mover's Distance EMD(x;y) between

x and y is the minimum amount of work to match x and y, normalized by the weight of

the lighter distribution:

EMD(x;y) =
minF=(fij)2F(x;y) WORK(F;x;y)

min(w�; u�)
: (4.5)

In the next section, we connect the work minimization problem in the numerator of (4.5) to

a special type of linear program called the transportation problem ([32]). The normalization

by the minimum weight makes the EMD equal to the average distance travelled by weight

during an optimal (i.e. work minimizing) 
ow, and ensures that the EMD does not change

if all the weights in both distributions are scaled by the same factor. Examples of feasible

non-optimal and optimal 
ows between equal-weight distributions are shown in Figure 4.3,

and between unequal-weight distributions are shown in Figure 4.4. In the unequal-weight

case, some of the weight in the heavier distribution is unmatched by a feasible 
ow (more

precisely, w� � u� x-weight is unmatched if x is heavier than y).

The EMD is a metric when the total weights of the distributions are equal and the

ground distance between weights is a metric ([68]). The only di�cult part of the proof is

showing the triangle inquality EMD(x; z) � EMD(x;y) + EMD(y; z). One way to morph

x into z is to morph x into y and then y into z. If dirt travels from xi to yj to zk,

then the metric assumption for the ground distance yields d(xi; zk) � d(xi; yj) + d(yj ; zk);

i.e., it is cheaper just to transport the dirt directly from xi to zk . If we use an optimal

matching F � = (f�ij) to change x into y and an optimal matching G� = (g�jk) to change

y into z, then the composite morphing H = (hik) to change x into z cannot cost more

than EMD(x;y)+EMD(y; z). The EMD triangle inequality then follows from the fact that

EMD(x; z) is the minimum cost of any morphing from x to z. The composite 
ow H is
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Figure 4.3: A Non-Optimal and an Optimal Flow between Equal-Weight Distributions. The

area of the disc around a weight location is equal to the amount of weight at that location.

(a) The amount of work done to match x and y by this feasible 
ow is 0:23� 155:7+0:51�
252:3 + 0:26� 316:3 = 246:7. This 
ow is not optimal. (b) This 
ow is a work minimizing


ow. The total amount of work done is 0:23�155:7+0:26�277:0+0:25�252:3+0:26�198:2 =
222:4. Since the total weight of both x and y is one, the EMD is equal to the minimum

amount of work: EMD(x;y) = 222:4.
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Figure 4.4: A Non-Optimal and an Optimal Flow between Unequal-Weight Distributions.

Here x is heavier than y. (a) The amount of work done to match x and y by this feasible


ow is 0:51 � 252:3 + 0:23 � 292:9 = 196:0. For this 
ow, 0.23 of the weight at x1 and

0.03 of the weight at x2 are not used in the matching. This 
ow is not optimal. (b)

This 
ow is a work minimizing 
ow. The total amount of work for this 
ow to cover y

is 0:23� 155:7 + 0:25� 252:3 + 0:26� 198:2 = 150:4. For this 
ow, 0.26 of the weight at

x1 is not used in the matching. Since the total weight of the lighter distribution is 0.74,

EMD(x;y) = 150:4=0:74 = 203:3.
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derived from the 
ows F � and G� as the sum of interval intersections

hik =
nX
j=1

������
2
4i�1X
b{=1 f

�b{j ;
iX
b{=1 f

�b{j
3
5\

2
4k�1X
bk=1 g

�

jbk;
kX
bk=1 g

�

jbk
3
5
������ :

See [68] for the intuition for this formula. Since the Lp (p � 1) distance functions are metrics,

the EMD is a metric between equal-weight distributions whenever the ground distance is

an Lp distance.

Another commonly used distance function is d = L22, the square of the ordinary L2

distance. The L22 distance function does not obey the triangle inequality, but it is a weak

metric between points since

jjp� qjj22 � 2(jjp� rjj22 + jjq � rjj22) 8p; q; r:

Thus, the morphing H from x to z costs no more than 2(EMD(x;y) + EMD(y; z)) when

the gorund distance is L22. It follows that

EMDL
2

2(x; z) � 2(EMDL
2

2(x;y)+ EMDL
2

2(y; z)): (4.6)

Thus, the EMD is a weak metric between equal-weight distributions when d = L22.

When the distributions are not necessarily equal-weight, the EMD is no longer a metric.

If x is lighter than y, then a feasible 
ow matches all the weight in x to part of the weight

in y. If x and z are both lighter than y, then it can happen that EMD(x;y) and EMD(y; z)

are small, but EMD(x; z) is large. This is because x and z might match well two parts of y

that have little or no weight in common. There is no reason that two such parts of y must

be similar under the EMD.

In the examples and discussion given thus far, the EMD measures the distance between

two collections of weighted points based on a ground distance between points. This does

not, however, expose the full generality of the EMD. The coordinates of distribution points

are not used directly in the EMD formulation; only the ground distances between points are

needed. Therefore, there is no need to work in a point feature space; the only requirement

is that ground distances between features can be computed. In general, the EMD is a dis-

tance measure between two sets of weighted objects which is built upon a distance between

individual objects. In this thesis, however, we focus mainly on the case of distributions of

weight in some point feature space.
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4.2 Connection to the Transportation Problem

The transportation problem (TP) is a special type of linear program (LP) which seeks to �nd

the minimum cost way to transport goods from a set of sources or suppliers i = 1; : : : ; m

to a set of destinations or demanders j = 1; : : : ; n. Supplier i has a supply of si units,

and demander j has a demand of dj units. The cost per unit transported from supplier i

to demander j is denoted by cij , and the number of units transported is denoted by xij .

Assuming that the total supply s� =
Pm
i=1 si is equal to the total demand d� =

Pn
j=1 dj ,

the transportation problem is to compute

min
(xij)

mX
i=1

nX
j=1

cijxij

subject to

xij � 0 i = 1; : : : ; m; j = 1; : : : ; n;
nX
j=1

xij = si i = 1; : : : ; m;

mX
i=1

xij = dj j = 1; : : : ; n:

If the total supply and demand are not equal, then it is impossible to satisfy the given

constraints. The equality constraints can be written as

2
6666666666666666664

1 1 � � � 1

1 1 � � � 1

.. .

1 1 � � � 1

1 1 1

1 1 � � � 1

.. .
. . .

. . .

1 1 1

3
7777777777777777775

2
66666666666666666666666666666666664

x11
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x1n
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x2n
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xm1
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xmn

3
77777777777777777777777777777777775

=

2
6666666666666666664

s1

s2
...

sm

d1
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3
7777777777777777775

:



68 CHAPTER 4. THE EARTH MOVER'S DISTANCE (EMD)

The structure of this coe�cient matrix can be exploited to improve both the time and space

required by the simplex algorithm on a transportation problem. A detailed description

of the transportation simplex method can be found in [32]. A C-code implementation of

transportation simplex algorithm is currently available at http://robotics.stanford.

edu/~rubner/research.html.

The transportation simplex algorithm can still be applied when the total supply s� is

greater than the total demand d�. The goal is still to �nd the minimum cost way to satisfy

all the demand. In this case, however, there will be some supply left over after the demand

has been satis�ed. The LP for the unbalanced case is

min
(xij)

mX
i=1

nX
j=1

cijxij

subject to

xij � 0 i = 1; : : : ; m; j = 1; : : : ; n;
nX
j=1

xij � si i = 1; : : : ; m;

mX
i=1

xij = dj j = 1; : : : ; n:

In order to apply the transportation simplex method, we convert the unbalanced TP to an

equivalent balanced TP. This is done by adding a dummy demander n + 1 with demand

dn+1 = s��d�, and for which ci;n+1 = 0 for i = 1; : : : ; m. The total demand in the modi�ed

problem is equal to the total supply, and the minimum cost is the same for the balanced

and unbalanced problems. The dummy demander gives the suppliers a place to dump their

leftover supply at no cost.

Let us now connect the workminimization LP to the unbalanced transportation problem.

If, for example, u� � w�, then the work minimization LP can be rewritten as

min
(fij)

mX
i=1

nX
j=1

fijdij

subject to

fij � 0 i = 1; : : : ; m; j = 1; : : : ; n;
nX
j=1

fij � wi i = 1; : : : ; m;
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mX
i=1

fij = uj j = 1; : : : ; n:

This LP is an unbalanced transportation problem, where the supplies are w1; : : : ; wm, the

demands are u1; : : : ; un, and the costs are dij = d(xi; yj). Similarly, if w� � u�, then

the suppliers are from distribution y = (Y; u) and the demanders are from distribution

x = (X;w). In the case of equal-weight distributions, w� = u�, the work LP reduces to

min
(fij)

mX
i=1

nX
j=1

fijdij

subject to

fij � 0 i = 1; : : : ; m; j = 1; : : : ; n;
nX
j=1

fij = wi i = 1; : : : ; m;

mX
i=1

fij = uj j = 1; : : : ; n;

which is a balanced transportation problem. Thus, the work minimization problem in the

numerator of equation (4.5) is a transportation problem, and it can be solved e�ciently by

applying the transportation simplex method.

4.3 Special Cases

In this section, we examine two special cases of the EMD when the input distributions are

restricted in some way. In section 4.3.1, we show that the EMD reduces to an optimal

one-to-one matching of points when all point weights in the two distributions are equal to

one. In section 4.3.2, we consider the case of equal-weight distributions on the real line.

In this case, we give a very e�cient algorithm to compute the EMD in one pass over the

points.

4.3.1 Point Set Matching using the EMD

A point set is a special case of a distribution in which all weights are equal to one. In the

language of the transportation problem, all the supplies and demands are equal to one unit.

A slightly more general restricted input to the transportation problem is one in which all

supplies and demands are equal to integers. Here we can assume that the transportation

problem is balanced, for a dummy demander that absorbs any excess supply will also have
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an integer demand. The integer input restriction adds structure to the transportation

problem in what is usually known as the integer solutions property. This property states

that when all the supplies and demands are integers, all feasible 
ows located at vertices

of the feasible convex polytope F have integer values ([32]). Hence, all optimal feasible

vertex 
ows consist only of integer values when all supplies and demands are integers. The

transportation simplex method returns an optimal vertex 
ow.

Now let us return to the speci�c case when all supplies and demands are equal to one.

From constraints (4.1), (4.2), and (4.3), it follows that 0 � fij � wi and 0 � fij � uj in

every feasible 
ow F = (fij). This means that 0 � fij � 1 in every feasible 
ow between

point sets. Combining this fact with the integer solutions property, there exists an optimal

feasible 
ow F � = (f�ij) at a vertex of F with f�ij 2 f0; 1g 8i; j. As previously noted,

the transportation simplex method will return such a solution. The 
ow values involving

a dummy demander needed to create a balanced transportation problem will be integers,

but need not be binary. This is irrelevant for our purposes since such 
ow variables are

not really part of the solution. The bottom line is that for distributions x 2 DK;m and

y 2 DK;n which are point sets in RK with m � n,

EMD(x;y) =
minF=(fij)2F(x;y)

Pm
i=1

Pn
j=1 fijd(xi; yj)

min(w�; u�)
=

min�2�
Pn
j=1 d(x�(j); yj)

n
;

where � is the set of one-to-one correspondences

� = f � : f 1; : : : ; n g ! f 1; : : : ; m g j �(j1) = �(j2), j1 = j2 g :

Thus, the EMD between point sets measures the average distance between corresponding

points in an optimal one-to-one matching.

It is worthwhile to note that although the transportation simplex method will �nd

an optimal one-to-one matching between point sets, it does not take advantage of the

fact that the supplies and demands are all equal to one. A transportation problem with

such supplies and demands is known as an assignment problem, and there are specialized

algorithms to solve assignment problems ([75]). One word of caution is needed before

applying an assignment problem algorithm instead of a transportation problem algorithm

to match point sets. Creating a balanced assignment problem (i.e. one in which the two

point sets have the same number of points) by adding dummy points to the smaller set

will result in a large increase in the number of problem variables if the two sets have very

di�erent sizes. A transportation problem can be balanced with the addition of only one

dummy demander which creates far fewer dummy variables than in the assignment case.
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Thus for very unbalanced point set matching problems, it may be more e�cient to apply

the transportation simplex method than an assignment problem algorithm which operates

only on balanced problems.

4.3.2 The EMD in One Dimension

Let x = (X;w) 2 D1;m and y = (Y; u) 2 D1;n be distributions on the real line. Assume the

points in x and y are sorted by position:

x1 < x2 < � � �< xm and y1 < y2 < � � � < yn:

We also assume in this section that the ground distance between points is the absolute value

(d = L1).

De�ne the cumulative distribution function (CDF) of x as

W (t) =

8>>><
>>>:

0 if t 2 (�1; x1)Pk
i=1 wi if t 2 [xk; xk+1), 1 � k � m� 1

w� =
Pm
i=1 wi if t 2 [xm;1):

Similarly, the CDF of y is

U(t) =

8>>><
>>>:

0 if t 2 (�1; y1)Pl
j=1 uj if t 2 [yl; yl+1), 1 � l � n� 1

u� =
Pn
j=1 uj if t 2 [yn;1):

If x and y are equal weight, then the minimum work to transform one distribution into the

other is the area between the graphs of the CDFs of x and y. We shall prove this fact later

in this section in Theorem 5. An example is shown in Figure 4.5.

The 
ow naturally de�ned by the CDFs is called the CDF 
ow, and is denoted FCDF =

(fCDFij ). Once again, see Figure 4.5. If we let

Wk = W (xk) =
Pk
i=1wi and

Ul = U(yl) =
Pl
j=1 uj ;

then the CDF 
ow is given by

fCDFij = j[Wi�1;Wi] \ [Uj�1; Uj ]j:

Theorem 4 The 
ow FCDF is a feasible 
ow between equal-weight distributions x and y;
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W (t)
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Figure 4.5: The EMD between Equal-Weight Distributions on the Real Line. The cumu-

lative distribution functions (CDFs) for the equal-weight line distributions x and y are

W (t) and U(t), repsectively. The minimum work to transform x into y is equal to the area

between the two CDFs. An optimal transforming 
ow FCDF = (fCDFij ), called the CDF


ow, is shown with directed lines from x-weight to matching y-weight. The CDF 
ow is

fCDF11 = 2, fCDF21 = 3, fCDF31 = 5, fCDF32 = 1, fCDF33 = 1, fCDF43 = 1, and fCDFij = 0 for all

other pairs (i; j). The EMD between x and y is obtained by dividing the minimum work

by the total weight of the distributions (w� = u� = 13 in this example).
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W0 = 0

U0 = 0 U1 U2 Un�1 Un = u� = w�

W1 W2 W3 Wm�1 Wm = w� = u�� � �

� � �

w1 w2 w3 wm

u1 u2 un

Figure 4.6: Feasibility of the CDF 
ow. The length of the x-interval [Wi�1;Wi] is the x-

weight wi, and the length of the y-interval [Uj�1; Uj] is the y-weight uj . It should be clear

from this �gure that
Pn
j=1 f

CDF
ij = wi and

Pm
i=1 f

CDF
ij = uj , where f

CDF
ij = j[Wi�1;Wi] \

[Uj�1; Uj ]j.

i.e., FCDF 2 F(x;y).

Proof. Obviously fCDFij � 0. It remains to show that

nX
j=1

fCDFij = wi and
mX
i=1

fCDFij = uj :

Note that the disjoint (except at interval endpoints) unions

m[
i=1

[Wi�1;Wi] = [0; w�] and
n[
j=1

[Uj�1; Uj ] = [0; u�]

cover exactly the same interval [0; w�] = [0; u�]. See Figure 4.6. It follows that

Pn
j=1 f

CDF
ij =

Pn
j=1 j[Wi�1;Wi]\ [Uj�1; Uj]j

=
���[Wi�1;Wi] \

�Sn
j=1[Uj�1; Uj ]

���� (interior disjointness of [Uj�1; Uj])

= j[Wi�1;Wi] \ [0; u�]j
= j[Wi�1;Wi] \ [0; w�]j
= j[Wi�1;Wi]j ([Wi�1;Wi] � [0; w�])Pn

j=1 f
CDF
ij = wi:

Similar reasoning proves that
Pm
i=1 f

CDF
ij = uj .

Now denote the sorted list of breakpoints x1; x2; : : : ; xm; y1; y2; : : : ; yn as

r1 � r2 � � � � � rm+n:

See Figure 4.5. In order to prove the optimality of FCDF, we need the following lemma.
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rk rk+1

yJ(k+1)yJ(k+1)�1 xI(k) xI(k)+1

rk rk+1

yJ(k+1)yJ(k+1)�1xI(k) xI(k)+1

rk rk+1

yJ(k+1)yJ(k+1)�1 xI(k) xI(k)+1

rk rk+1

yJ(k+1)yJ(k+1)�1xI(k) xI(k)+1

Figure 4.7: Breakpoint Notation Used in Lemma 2. I(k) is the largest i such that xi � rk,

and J(k + 1) is the smallest j such that yj � rk+1. The leftmost and rightmost labelled

points are not necessarily rk�1 and rk+2.

Lemma 2 The feasible 
ow FCDF between equal-weight distributions x and y moves exactly

jW (rk) � U(rk)j weight from x to y over the interval (rk; rk+1). More precisely, it moves

W (rk) � U(rk) x-weight from rk to rk+1 if W (rk) � U(rk) and U(rk)�W (rk) from rk+1

to rk if U(rk) > W (rk).

Proof. Let I(k) be the largest i such that xi � rk, and let J(k + 1) be the smallest j such

that yj � rk+1. The four possible con�gurations are shown in Figure 4.7. Note also that

I(k) + 1 is the smallest i such that xi � rk+1 and J(k + 1) � 1 is the largest j such that

yj � rk. The key observations here are that

WI(k) = W (rk) and UJ(k+1)�1 = U(rk) (4.7)

for all four possible con�gurations.

The amount of x-weight �k!k+1 that 
ows from rk to rk+1 during the feasible 
ow

FCDF is

�k!k+1 =

I(k)X
i=1

nX
j=J(k+1)

fCDFij

=

I(k)X
i=1

nX
j=J(k+1)

j[Wi�1;Wi]\ [Uj�1; Uj]j

=
����[I(k)i=1 [Wi�1;Wi]

�
\
�
[nj=J(k+1)[Uj�1; Uj]

���� (4.8)

= j[0;WI(k)] \ [UJ(k+1)�1; Un]j
= j[0;W (rk)] \ [U(rk); u�]j (by (4.7))

�k!k+1 =

8<
: W (rk)� U(rk) if W (rk) � U(rk)

0 otherwise
: (4.9)

The line (4.8) follows from the previous line by the interior disjointness of the intervals

[Wi�1;Wi] and the interior disjointness of the intervals [Uj�1; Uj]. Similarly, the amount of
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x-weight �k+1!k that 
ows from rk+1 to rk is

�k+1!k =
mX

i=I(k)+1

J(k+1)�1X
j=1

fCDFij

=
mX

i=I(k)+1

J(k+1)�1X
j=1

j[Wi�1;Wi]\ [Uj�1; Uj]j

=
����[mi=I(k)+1[Wi�1;Wi]

�
\
�
[J(k+1)�1j=1 [Uj�1; Uj]

����
= j[WI(k);Wm]\ [0; UJ(k+1)�1]j
= j[W (rk); w�] \ [0; U(rk)]j (by (4.7))

�k+1!k =

8<
: U(rk)�W (rk) if U(rk) > W (rk)

0 otherwise
: (4.10)

The desired result follows from (4.9) and (4.10).

We are now ready to prove the main result of this section.

Theorem 5 If x = (X;w) 2 D1;m and y = (Y; u) 2 D1;n have equal weight w� = u�, then

EMD(x;y) =

R
1

�1
jW (t)� U(t)j dt

w�
:

Furthermore, FCDF is an optimal feasible 
ow between x and y.

Proof. Note that W (t) and U(t) are constant over the interval t 2 [rk; rk+1) for k =

1; : : : ; m + n � 1, W (t) = U(t) � 0 for t 2 (�1; r1), and W (t) = U(t) � w� = u� for

t 2 [rm+n;1). Therefore the integral of the absolute di�erence of the CDFs may be written

as the �nite summation

Z
1

�1

jW (t)� U(t)j dt =
m+n�1X
k=1

Ek ; (4.11)

where

Ek = (rk+1 � rk) jW (rk)� U(rk)j:

Consider the interval (rk; rk+1). At any position t in this interval, the absolute di�erence

jW (t) � U(t)j is equal to jW (rk) � U(rk)j. Suppose that W (rk) > U(rk). Then in any

feasible 
ow from x to y, the net 
ow from rk to rk+1 must be exactly W (rk) � U(rk).

If the net 
ow is less than this amount, then there will be less x-weight than y-weight in

[rk+1;1) after the 
ow is complete. If the net 
ow is more than this amount, then there will

be more x-weight than y-weight in [rk+1;1) after the 
ow is complete. See Figure 4.8(a).
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(a)

W (rk)

U(rk)

>

w� �W (rk)

u� � U(rk)

<

rk rk+1

W (rk)� U(rk)

U(rk)

U(rk)

=

w� � U(rk)

u� � U(rk)

=

rk rk+1

Case. w� = u�, W (rk) > U(rk), w� �W (rk) < u� � U(rk)

(b)

W (rk)

U(rk)

<

w� �W (rk)

u� � U(rk)

>

rk rk+1

U(rk)�W (rk)

U(rk)

U(rk)

=

w� � U(rk)

u� � U(rk)

=

rk rk+1

Case. w� = u�, W (rk) < U(rk), w� �W (rk) > u� � U(rk)

Figure 4.8: Flow Feasibility for Equal-Weight Distributions on the Real Line. x = (X;w)

and y = (Y; u) are distributions in 1D. Here r1 � � � � � rm+n is the position-sorted list

of points in x and y, and W (t) and U(t) are the CDFs for x and y, respectively. (a)

W (rk) > U(rk), w� �W (rk) < u� �U(rk). In this case, a 
ow from x to y is feasible only

if the net 
ow of x-weight from rk to rk+1 is exactly W (rk)� U(rk). (b) W (rk) < U(rk),

w� �W (rk) > u� � U(rk). In this case, a 
ow from x to y is feasible only if the net 
ow

of x-weight from rk+1 to rk is exactly U(rk)�W (rk).

Similar logic shows that if U(rk) > W (rk), then the net 
ow of x-weight from rk+1 to rk

must be exactly U(rk)�W (rk). This case is illustrated in Figure 4.8(b). In either case, the
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amount of work Ek done in moving weight from x over the interval (rk; rk+1) is at least Ek,

and

min
F2F(x;y)

WORK(F;x;y)�
m+n�1X
k=1

Ek: (4.12)

To complete the proof, note that Lemma 2 says that FCDF is a feasible 
ow1 which requires

work
Pm+n�1
k=1 Ek to match x and y. It follows that

min
F2F(x;y)

WORK(F;x;y)�WORK(FCDF;x;y) =
m+n�1X
k=1

Ek: (4.13)

Combining (4.12), (4.13), and (4.11) gives the desired result after normalizing by w� = u�.

Pseudocode to compute the EMD between equal-weight distributions in one dimension

(with ground distance equal to the L1 distance) is given below. This code is a direct

translation of (4.11) and computes the integral by a sweep over the position axis, summing

areas of rectangles with bases rk+1� rk and heights jW (rk)�U(rk)j. Again, see Figure 4.5.

function emd = EMD1(x;y)

/* assumes K = 1, w� = u�, ground distance is L1 */

/* assumes x1 � x2 � � � � � xm, y1 � y2 � � � � � yn */

work = wsum = usum = r = 0

/* �rst increment of work will be 0, regardless of r */

i = j = 1

xnext = x1
ynext = y1
while ((i � m) or (j � n))

if (xnext � ynext)

work += jwsum-usumj*(xnext-r)
wsum += wi
r = xnext

i += 1

xnext = (i � m) ? xi : 1
else

work += jwsum-usumj*(ynext-r)
usum += uj
r = ynext

j += 1

1In [11], it is incorrectly stated that there is a unique feasible 
ow between equal-weight distributions

in 1D. In fact, there may even be more than one optimal feasible 
ow. For example, suppose X = [0 1],
w = [1 1], Y = [1 2], and u = [1 1]. Then FCDF is given by fCDF11 = fCDF22 = 1, fCDF12 = fCDF21 = 0. The

feasible 
ow F � given by f�11 = f�22 = 0, f�12 = f�21 = 1 is also an optimal feasible 
ow between x = (X;w)

and y = (Y; u).
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ynext = (j � n) ? yj : 1
end if

end while

return (work / usum)

end function

Assuming that the points in x 2 D1;m and y 2 D1;n are in sorted order, the routine

EMD1 runs in linear time �(m + n). The combined sorted list r1; : : : ; rm+n of points in x

and y is discovered by walking along the two sorted lists of points. At any time during the

algorithm, there is a pointer to the next x and next y value to be considered. The value

rk+1 then follows in constant time from the value of rk.

The function EMD1 does not compute the optimal CDF 
ow FCDF = (fCDFij ). We can

rewrite the EMD1 routine as shown below so that it also returns the optimal CDF 
ow

with the single EMD value. This code is a direct translation of the fact that
R
1

�1
jW (t) �

U(t)j dt = Pm
i=1

Pn
j=1 f

CDF
ij jxi � yj j (which follows from Theorem 5) and computes the

integral by a sweep over the cumulative-weight axis, summing areas of rectangles with

bases fCDFij and heights jxi � yj j. See Figure 4.9.

function [emd,CDF
ow] = EMD1(x;y)

/* assumes K = 1, w� = u�, ground distance is L1 */

/* assumes x1 � x2 � � � � � xm, y1 � y2 � � � � � yn */

work = prev = CDF
ow.nFlow = 0

i = j = 1

wsum = w1 /* holds Wi */

usum = u1 /* holds Uj */

while ((i � m) and (j � n))

CDF
ow[CDF
ow.nFlow].from = i

CDF
ow[CDF
ow.nFlow].to = j

if (usum � wsum) /* check (Uj � Wi) */

fCDFij = usum-prev

work += fCDFij � jxi � yj j
prev = usum

usum += uj
j += 1

else

fCDFij = wsum-prev

work += fCDFij � jxi � yj j
prev = wsum

wsum += wi
i += 1

end if
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u1 = 10

w1 = 2

w2 = 3

u2 = 1

w3 = 7

u3 = 2

w4 = 1

010111213 25

U�1(s)

W�1(s)

t

y1

x1

x2

x3

x4

y2

y3

s

fCDF21 fCDF11fCDF31

Figure 4.9: The Inverse CDFs. The area between the inverse CDFs W�1(s) and U�1(s)

over s 2 [0; w�] = [0; u�] is clearly the same as the area between the CDFs W (t) and U(t)

(see Figure 4.5) over t 2 (�1;1).
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CDF
ow[CDF
ow.nFlow].amount = fCDFij

CDF
ow.nFlow += 1

end while

emd = work / usum

return (emd,CDF
ow)

end function

This version of EMD1 also runs in �(m + n) time since there is a constant amount of

computation done at each of the m + n breakpoints W1; : : : ;Wm; U1; : : : ; Un. All 
ow

variables fCDFij not explicitly contained in the variable CDF
ow are equal to zero.

4.4 Modi�cations

We now discuss some useful modi�cations to the EMD. As initially stated, the EMD com-

putation forces all the weight in the lighter distribution to match weight in the heavier dis-

tribution. In section 4.4.1, we extend the EMD to take another parameter 0 < 
 � 1 which

speci�es the fraction of the lighter distribution to be matched. The partial Earth Mover's

Distance computation automatically selects the best weight from the lighter distribution to

match.2 The ability to compute the best partial match is important for robustness in the

presence of outliers and/or missing data.3 The 
 parameter is an attempt to avoid penal-

izing the non-matching parts of two distributions which have a lot in common. Remember

that the goal is to measure visual similarity by matching summary distributions, and visual

similarity may follow from only a partial match. An alternative similarity measure which

accounts for this fact asks \How much weight can be matched when 
ow distances are lim-

ited to at most some given ground distance �?". This restricted Earth Mover's Distance is

the subject of section 4.4.2.

4.4.1 The Partial Earth Mover's Distance

The partial Earth Mover's Distance EMD
 matches only a given fraction 0 < 
 � 1 of the

weight of the lighter distribution or some absolute amount of weight 0 < 
 � min(w�; u�).

The former case in which 
 is a relative quantity is called the relative partial EMD, and

the latter case in which 
 is an absolute quantity is called the absolute partial EMD. In a

2This name may be slightly misleading since the EMD already does partial matching. When one dis-
tribution is heavier than the other, all the weight in the lighter distribution is matched, but some of the

weight in the heavier distribution is unmatched. With the partial EMD, some of the weight of the lighter
distribution is unmatched.

3The EMD is robust to a small amount of outlier mass since the large ground distances needed to match

the outlier mass are weighted by small fractions of mass moved.
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relative partial EMD problem, the amount of weight matched is M(
) = 
min(w�; u�); in

an absolute partial EMD problem, the amount of weight matched is M(
) = 
. In either

case, the conditions for a feasible 
ow are

fij � 0 i = 1; : : : ; m; j = 1; : : : ; n;
nX
j=1

fij � wi i = 1; : : : ; m;

mX
i=1

fij � uj j = 1; : : : ; n; and

mX
i=1

nX
j=1

fij = M(
): (4.14)

The only di�erence in the feasibility conditions for the partial EMD and the ordinary EMD

are in the �nal conditions (4.14) and (4.4) which indicate the total amount of weight to

match. If we denote the set of feasible 
ows between x and y for partial match parameter


 as F
(x;y), then we de�ne the partial EMD as

EMD
(x;y) =
minF=(fij)2F
(x;y) WORK(F;x;y)

M(
)
: (4.15)

Since 
 is given, the denominator of (4.15) is �xed for an EMD
 computation. An example

partial EMD computation is shown in Figure 4.10. In section 4.2, we showed that the work

minimization problem for the ordinary EMD computation can be solved as a transportation

problem. We now show that the same is true for the (relative or absolute) partial EMD

computation. Therefore, the same transportation problem code that is used to compute

the EMD can also be used to compute the partial EMD.

Suppose that x is at least as heavy as y; i.e., w� � u�. Then the work minimization

problem in the numerator of (4.15) is the balanced transportation problem

si = wi i = 1; : : : ; m

sm+1 = u� �M(
)

dj = uj ; j = 1; : : : ; n

dn+1 = w� �M(
)

cij = d(xi; yj) i = 1; : : : ; m; j = 1; : : : ; n

cm+1;j = 0 j = 1; : : : ; n

ci;n+1 = 0 i = 1; : : : ; m

cm+1;n+1 = 1:
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Partial EMD with M(
) = 3

1.6

.4.4

.8 .8

4

4

2.4

.2 .4

1.6

.8

Figure 4.10: Partial EMD Example. The dark gray distribution has total weight 8, while

the light gray distribution has total weight 6.4. An optimal 
ow for the partial EMD when

M(
) = 3 units of weight must be matched is shown by the labelled edges. All ground

distances used in this 
ow are equal, and less than all ground distances not used.

� � � � � �

� � � � � �

w1 wi wm

u1 uj un w� � 


u� � 


d(xi; yj) 1

0

0

w� + u� � 


w� + u� � 


x1 xi xm

y1 yj yn

Figure 4.11: The Partial EMD as a Balanced Transportation Problem. See the text for an

explanation.

A graphical representation is shown in Figure 4.11. The total supply s� and total demand d�

are both equal to w�+u��M(
). The dummy supplier m+1 is given a supply which equal

to the unmatched weight of y, while the dummy demander n+1 is given a demand which is

equal to the unmatched weight of x. The weight of the dummy supplier is prevented from

matching the weight of the dummy demander with the requirement cm+1;n+1 =1, so all of

the weight of the dummy supplier will be matched at no cost to demanders j = 1; : : : ; n. Of
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the remaining supply w� possessed by suppliers i = 1; : : : ; m, w��M(
) will be matched at

no cost to the dummy demander. Therefore only M(
) weight will be matched at possibly

nonzero cost. An algorithm to solve the transportation problem will �nd the optimal way

to transport this weight from suppliers i = 1; : : : ; m to demanders j = 1; : : : ; n. If x is

lighter than y, then the above formulation with the roles of x and y interchanged allows

the partial EMD work minimization problem to be formulated as a balanced transportation

problem.

In section 4.3.1, we discussed the special case in which the two distributions compared

by the EMD are point sets. The EMD yields an optimal one-to-one matching in which each

point in the smaller set is matched to a point in the larger set. Using the partial EMD

instead of the EMD, we can �nd an optimal matching which matches only some subset of

the points in the smaller set. The total number of points to be matched using EMD
 is

M(
). As long as 
 is selected so that M(
) is an integer, all the supplies and demands

in the corresponding transportation problem will be integers (see the above formulations),

with all the non-dummy supplies and demands equal to one. Applying the transportation

simplex algorithm will yield an optimal one-to-one matching between size M(
) subsets of

the smaller and larger sets. If the distributions x 2 DK;m and y 2 DK;n are point sets in

RK with m � n, then

EMD
(x;y) =
minF=(fij)2F
(x;y)

Pm
i=1

Pn
j=1 fijd(xi; yj)

M(
)

=
min�2�


P
j2domain(�) d(x�(j); yj)

M(
)
;

where �
 is the set of one-to-one partial correspondences

�
 = f � : S ! [1::m] j S � [1::n]; jSj =M(
); �(j1) = �(j2), j1 = j2 8j1; j2 2 S g :

It is important to note that only the number of points to be matched is given; the partial

EMD �gures out the best subsets to match.

4.4.2 The Restricted Earth Mover's Distance

The restricted Earth Mover's Distance � -EMD is a measure of how much weight can be

matched when ground distances for transportation are limited to a threshold � . When

comparing two distributions x = (X;w) and y = (Y; u), the maximum amount of weight

that can be matched if transportation distances dij = d(xi; yj) are unrestricted is M =

min(w�; u�). Let M� denote the maximum amount of weight that can be matched using
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� = 15

M� = :7

:6

:4

:7

:3
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��EMD = :3

Figure 4.12: � -EMD Example. (left) Equal-weight distributions with distances between

weight locations. (right) If � = 15, then the maximum amount of weight that can be

matched is M� = 0:7. The maximal matching is indicated by the labelled edges. Weight

cannot be matched between the locations which are 20 > � units apart. Since the to-

tal weight of both distributions is one, the fraction of weight that cannot be matched is

� -EMD = 0:3.

only distances dij � � . Then we de�ne the restricted EMD as

� -EMD(x;y) = 1� M� (x;y)

min(w�; u�)
: (4.16)

Note that the � -EMD actually equals the fraction of weight that cannot be matched, with

0 � � -EMD(x;y) � 1, so that � -EMD is a dissimilarity measure rather than a similarity

measure. The extreme values are zero when the maximum amount of weight can be matched,

and one when none of the weight can be matched. An example is shown in Figure 4.12. We

now show that the computation of M� (x;y) is a transportation problem.

The M� (x;y) computation is the linear program

M� (x;y) = max
F2F(x;y)

mX
i=1

nX
j=1

fij [d(xi; yj) � � ];

where

d�(xi; yj) = [d(xi; yj) � � ] =

8<
: 1 if d(xi; yj) � �

0 otherwise
:

The 
ow constraints are the same as for the original EMD computation, but now we sum

up the matched weight fij whenever d(xi; yj) � � . The transportation problem here is

�M� (x;y) = min
F2F(x;y)

mX
i=1

nX
j=1

fij(�d�(xi; yj))

In fact, this is an original EMD computation with ground distances (�d�(xi; yj)). There is
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no restriction in the transportation problem that costs be nonnegative, and the transporta-

tion simplex method makes no such assumption.

4.5 Use in Scale Estimation

In this section, we show how to use the EMD to estimate the scale at which a pattern

appears within an image. Figure 4.13(a) shows an example of the color pattern problem.

Scale estimation is a critical step in solving the pattern problem accurately and e�ciently.

A good scale estimate is important for accuracy because the scale determines how much

information in the image is compared to the pattern; it is important for e�ciency because

trying many scales will be ine�cient, especially if one is interested in �nding very small

occurrences of the pattern. Along with a scale estimate, our method also returns a measure

indicating the distance between the pattern at the predicted scale and the image. If this

distance is large, then the pattern probably does not occur within the image.

We regard an image as a distribution of color mass or curve orientation mass (for the

shape pattern problem) in position space. Our scale estimation method uses the EMD to

compare image summary distributions after marginalizing away position. Ignoring posi-

tion information does throw away useful information, but it reduces the complexity of the

summary distributions and, therefore, allows fast scale estimation. We will show that it is

possible to get very good scale estimates without position information if the pattern has

a single distinctive feature with respect to the image. In the color pattern problem, the

marginalized distribution is a distribution in color space. In order to keep the distribution

size small, the colors of an image are clustered into a small number of groups (approximately

twenty). The weight of a color cluster in CIE-Lab space ([88]) is the fraction of the total

image area classi�ed as that color. Thus the total weight of a summary distribution is one.

Suppose that a pattern occurs in an image as a fraction c� 2 (0; 1] of the total image

area. An example is shown in Figure 4.13(a). Let x and y = (Y; u) denote unit-weight color

signatures of the image and pattern, respectively. See Figure 4.13(b),(d). Since (Y; c�u) is

lighter than x, the EMD �nds the optimal matching between c� of the image color weight

and the color weight in (Y; c�u). Consider the ideal case of an exact pattern occurrence,

with the same color clusters used in x and y for the pattern colors. Then the c� of x's

color weight contributed by the pattern occurrence will match exactly the color weight in

(Y; c�u), and EMD(x; (Y; c�u)) = 0. Furthermore, EMD(x; (Y; cu)) = 0 for c 2 (0; c�] since

there is still enough image weight of each pattern color to match all the weight in (Y; cu). In

general, we will prove that EMD(x; (Y; cu)) decreases as c decreases and eventually becomes

constant for c 2 (0; c0], as shown in Figure 4.13(e). If the graph levels o� at a small EMD,
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Figure 4.13: Scale Estimation { Main Idea. (a) pattern, image, and pattern scaled according

to the scale estimate. (b) pattern signature. (c) pattern signature with weights scaled by

the estimate. (d) image signature. (e) EMD(x; (Y; cu)) versus c.

then the pattern may occur in the image, and we take c0 to be the scale estimate.

The main property of this scale estimation method is that in the ideal case it overes-

timates the scale by the minimum amount of background clutter over all pattern colors,

where the amount of background clutter for a color is the amount of that color present

in the image but not part of the pattern occurrence. Just one pattern color with a small

amount of background clutter is enough to obtain an accurate scale estimate. Consider the

example in Figure 4.13. The scale estimate c0 is such that the amounts of red and yellow

in the scaled pattern signature (Y; c0u) are roughly equal to the amounts of red and yellow

in the image, as shown in Figure 4.13(c). At scale c0, there is still plenty of image weight

to match the other pattern colors in (Y; c0u). If there were a bit more red and yellow in the

image, then the scale estimate c0 would be a bit too high. In this example, red and yellow

have zero background clutter since the only place that they occur in the image is within the

pattern occurrence. Note that an accurate scale estimate is computed even in the presence

of the dark green in the Comet label for which there is a lot of background clutter.

The preceeding discussion tacitly assumes that the pattern occurs only once in the

image. Since our method does not use the positions of colors, it cannot tell the di�erence

between two pattern occurrences at scales c1 and c2, and one larger occurrence at scale
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c1 + c2. In this two pattern occurrence example, the computed scale estimate will be at

least c1 + c2 if the same color clusters are used in x and y for the pattern colors.

We now study of the function E(c) = EMD((X;w); (Y; cu)), where x = (X;w) and

y = (Y; u) are equal-weight distributions with total weight one, and 0 < c � 1. The

distribution (Y; cu) has total weight c � 1. The function E(c) is thus given by

E(c) =
min(fij)2F(x;(Y;cu))

Pm
i=1

Pn
j=1 fijd(xi; yj)

c
;

where (fij) 2 F(x; (Y; cu)) i�

fij � 0 i = 1; : : : ; m; j = 1; : : : ; n;
mX
i=1

fij = cuj j = 1; : : : ; n; and

nX
j=1

fij � wi i = 1; : : : ; m:

Now set hij = fij=c. Then

E(c) = min
(hij)2F((X;

1

c
w);y)

mX
i=1

nX
j=1

hijd(xi; yj);

where (hij) 2 F((X; 1cw);y) i�

hij � 0 i = 1; : : : ; m; j = 1; : : : ; n; (4.17)
mX
i=1

hij = uj j = 1; : : : ; n; and (4.18)

nX
j=1

hij � 1

c
wi i = 1; : : : ; m: (4.19)

Note that

F((X;w=c1);y)� F((X;w=c2);y)() 1

c1
� 1

c2
() c2 � c1: (4.20)

Algebraically, the fact that the feasible region F((X; 1
c
w);y) increases as c decreases (and

vice-versa) is because the �nal m constraints (4.19) involving the wi's get weaker (stronger)

as c decreases (increases). Logically, this fact make sense because the less mass that the

EMD is asked to matched, the more ways there are to perform the matching.

Since E(c) is a minimum over F((X; 1
c
w);y), it follows from (4.20) that E(c) is a non-

decreasing function of c:

E(c1) � E(c2) i� c1 � c2: (4.21)
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In fact, however, we can say something stronger than (4.21). Consider the convex polytope

Q � Rmn de�ned by (4.17) and (4.18), and the convex polytope P (c) � Rmn de�ned

by (4.19), so that

F((X;w=c);y) = Q \ P (c): (4.22)

Q is bounded since its constraints imply that 0 � hij � uj for i = 1; : : : ; m, j = 1; : : : ; n.

The polytope P (c) converges to Rmn as c decreases to zero since 1
c increases to 1. Since

Q is bounded, there is some c0 for which Q � P (c) 8c � c0. From this fact and (4.22), it

follows that

F((X;w=c);y) = Q 8c � c0;

and, hence,

E(c) = E(c0) 8c � c0: (4.23)

Thus E(c) decreases as c decreases, until some point c0 at which the curve 
attens out.

Examples are shown in �gures 4.13(e), 4.15, and 4.16.

To help with the intuition for (4.23), consider a simple color pattern problem example.

Suppose the pattern contains 30% red, 40% white, and 30% blue, and the pattern is 20%

of the image. In the ideal case of perfect color matches, the image has at least 6% red, 8%

white, and 6% blue due to the presence of the pattern. If the pattern is scaled by less than

c = 0:20 = 20%, then its distribution will contain less than 6% red, 8% white, and 6% blue,

and all of this color mass can be matched perfectly to the color masses of the image. The

EMD will be zero for all values 0 < c � 0:20.

We take as our scale estimate the largest c for which there is no real improvement in

the EMD when c is decreased. What constitutes \no real improvement" in the value of the

EMD is given as a parameter "d. There is also a parameter "c to specify the accuracy that

is required for the scale estimate. Finally, the parameter cmin gives the smallest scale to be

examined. The largest c for which there is no improvement in the EMD can be found via

a binary search along the c-axis. See Figure 4.14. The pseudocode given below returns the

scale estimate c0, the EMD value d0 = EMD(x; (Y; c0u)), and an optimal 
ow 
ow0 at the

scale estimate.

function [c0,d0,
ow0] = ScaleEstimate(x,y,cmin,"c,"d)

/* x = (X;w), y = (Y; u) */

/* assumes w� = u� = 1 */

cmax = 1

[dmin; 
owmin] = EMD((X;w); (Y; cminu))

/* loop invariant: cmin � c0 � cmax */
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EMD

c0 1cmin

Figure 4.14: Scale Estimation Algorithm. Binary search narrows down the interval in which

c0 must occur.

while (cmax� cmin > "c)

cmid = (cmin+ cmax)=2

[dmid; 
owmid] = EMD((X;w); (Y; cmidu))

if (jdmid� dminj � "d)

dmin = dmid
cmin = cmid

owmin = 
owmid

else

cmax = cmid
end if

end while

return (cmin,dmin,
owmin)

end function

Here cmin is the smallest scale pattern that the user wants to �nd. If the returned distance

d0 is greater than a user supplied threshold � , then we report that the pattern does not

occur within the image. Otherwise, we take c0 as an estimate of the pattern scale within

the image.

The ScaleEstimate routine requires at most dlog2(1="c)e + 1 EMD computations since

the length of the initial interval [cmin; cmax] = [cmin; 1] is at most one, and this interval is

cut in half after each EMD call within the while loop (the \+1" is from the initial EMD

call at c = cmin outside the loop). If, for example, "c = 0:001, then at most 11 EMD calls

are made before j[cmin; cmax]j � "c. Note that the point sets of the distributions remain

constant (X and Y ) throughout the execution of ScaleEstimate. Thus the cost matrix (cij),

cij = dij = d(xi; yj), for the EMD transportation problems can be computed once at the

beginning of ScaleEstimate and used for all subsequent EMD computations.

If we pass the threshold � to ScaleEstimate, then the routine can exit after the �rst call

EMD((X;w); (Y; cminu)) if this quantity is greater than � . This can happen, for example, if

a large part of the pattern is red, but there is no color similar to red in the image. No matter

how small the value of c, the distances that image color mass must 
ow in color space to
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cover the red pattern mass will be large in this case. Recall that the EMD is equal to the

average ground distance that mass travels during an optimal 
ow. Since a large fraction of

the total mass moved must travel large distances, the average distance moved, and hence

the EMD, will be large. If EMD((X;w); (Y; cminu)) > � , then ScaleEstimate performs only

one EMD computation before concluding that the pattern does not occur in the image.

ScaleEstimate may also bene�t in e�ciency from the use of e�cient, e�ective lower

bounds on the EMD. Only the result of comparing EMD((X;w); (Y; cmidu)) with the cur-

rent dmin is needed to determine in which half of [cmin; cmax] the scale estimate c0 oc-

curs. The actual value of the EMD is not needed if it can be proven by other means that

EMD((X;w); (Y; cmidu)) > dmin (as in the �rst and second frames in Figure 4.14). If so,

ScaleEstimate can update cmax = cmid without performing an EMD computation. Also, if

a lower bound on EMD((X;w); (Y; cminu)) is greater than � , then ScaleEstimate can exit

without performing a single EMD computation. Whether or not ScaleEstimate runs faster

using lower bounds depends on how long the lower bounds take to compute and how often

they succeed in pruning an EMD computation. Lower bounds on the EMD are discussed in

Chapter 5. We now shift from our discussion of e�ciency issues to a more general discussion

of the ScaleEstimate algorithm.

Consider the ideal case of perfectly matching features in the pattern and image. As

previously mentioned, our scale estimation method overestimates the scale by the mini-

mum amount of background clutter over all pattern colors in the ideal case. Suppose, for

example, the pattern distribution is 50% red, 20% white, and 30% blue, and that the pat-

tern represents 20% of the total image area. Then the image has at least 10% red, 4%

white, and 6% blue from the pattern. Suppose the exact distribution of the image is 40%

red, 5% white, 25% blue, 15% green, and 15% yellow. The white mass from the image

will not be covered completely until the pattern distribution is scaled by c = 0:25 = 25%.

After this point, there will be no gain in EMD with further decreases in scale. If the image

had 4% white instead of 5% white, our scale estimate would have been exactly correct at

c0 = 0:20 = 20%.

In general, the reasoning is not so clear cut because corresponding parts of the pattern

and image will not have exactly the same color (and even if the color matches were perfect

in the original images, clustering in color space to produce the small distributions will likely

destroy that perfection), and optimal matching strategies can match color mass from one

color in the pattern to several colors in the image. In practice, we have observed scale

estimates which are a little smaller than predicted by an ideal case analysis. This is true in

the Comet example shown in Figure 4.13, where there is zero background clutter for yellow

and red but the scale is slightly underestimated.
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4.5.1 Experiments with the Color Pattern Problem

Figures 4.15{4.19 illustrate the performance of our scale estimation algorithm for the color

pattern problem, where the patterns are product logos and the images are product adver-

tisements.
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Figure 4.15: Scale Estimation { Clorox Example. From left to right in the �rst row, we see

the Clorox logo (pattern), a Clorox advertisement, and the Clorox logo scaled according

to the scale estimate given by the graph in the second row. The graph predicts that the

pattern occurs at scale c0 = 1:0% of the image. The top left, top right, and bottom Clorox

logos occupy approximately 0:5%, 0:2%, and 0:5%, respectively, of the Clorox advertisement

area.



4.5. USE IN SCALE ESTIMATION 93

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
17.5

18

18.5

19

19.5

20

20.5

* (c0,d0)=(0.013,17.87)

c

E
M

D
((

X
,w

),
(Y

,c
u)

)

comet_1 = (X,w), clorox_tmpl = (Y,u)

Figure 4.16: Scale Estimation { Pattern Not in the Image. From left to right in the �rst

row, we see the Clorox logo (pattern), a Comet advertisement, and the Clorox logo scaled

according to the scale estimate given by the graph in the second row. The graph predicts

that the pattern occurs as c0 = 1:3% of the image. However, the EMD at scale c0 is

d0 = 17:87 units in CIE-Lab space. This large EMD value indicates that the pattern

probably does not occur within the image.
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(a) (b)

(c) (d)

Figure 4.17: Scale Estimation Results { Example Set 1. In each of the examples, the

advertisement is shown on the left and the scaled (according to our prediction) logo is

shown on the right. Let c0 denote the predicted scale and c denote the (approximate)

measured scale (in terms of fraction of advertisement area). (a) c0 = 2:2%, c = 3:8%. (b)

c0 = 4:2%, c = 6:3%. (c) c0 = 2:6%, c = 4:0%. (d) c0 = 6:3%, c = 7:9%.
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(a) (b)

(c) (d)

Figure 4.18: Scale Estimation Results { Example Set 2. In each of the examples, the

advertisement is shown on the left and the scaled (according to our prediction) logo is

shown on the right. Let c0 denote the predicted scale and c denote the (approximate)

measured scale (in terms of fraction of advertisement area). (a) c0 = 5:1%, c = 3:9%. (b)

c0 = 5:0%, c = 6:0%. (c) c0 = 3:6%, c = 4:7%. (d) c0 = 3:8%, c = 5:7%.
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Figure 4.19: Scale Estimation Results { Example Set 3. In each of the examples, the

advertisement is shown on the left and the scaled (according to our prediction) logo is

shown on the right. Let c0 denote the predicted scale and c denote the (approximate)

measured scale (in terms of fraction of advertisement area). (a) c0 = 3:8%, c = 4:3%. (b)

One of the cigarette boxes is c = 4:0% of the image. Our scale estimate c0 = 8:0% is too

large because the pattern occurs twice in the image. (c) c0 = 3:5%, c = 2:4%. (d) The box

of Tide occupies c = 1:4%. Our scale estimate c0 = 3:5% is too large because the pattern

occurs twice in the image.


