System Calls or Bu http://beej.us/guide/bgnet/output/html/multipagstsalls.htrr

10of13

<< Prev Beej's Guide to Network Programming Next >>

4
5. System Calls or Bust Socket

My-Home.Schneid.
This is the section where we get into the system calls (gnd cher Choose From A
library calls) that allow you to access the network functionality of & .
Unix box, or any box that supports the sockets API for that matter W'de_ Range Of
(BSD, Windows, Linux, Mac, what-have-you.) When you call one ¢ Attractive Colours,
these functions, the kernel takes over and does all the work for yo Patterns & More
automagically.

=

The place most people get stuck around here is what order to call
these things in. In that, thean pages are no use, as you've probabl
discovered. Well, to help with that dreadful situation, I've tried to la
out the system calls in the following sectionsxactly
(approximately) the same order that you'll need to call them in you
programs.

That, coupled with a few pieces of sample code here and there, sc
milk and cookies (which | fear you will have to supply yourself), an
some raw guts and courage, and you'll be beaming data around th
Internet like the Son of Jon Postel!

(Please note that for brevity, many code snippets below do not
include necessary error checking. And they very commonly assume
that the result fromcallsto get addr i nf o() succeed and return a
valid entry in the linked list. Both of these stuations are properly
addressed in the stand-al one programs, though, so use those asa
model.)

5.1. get addr i nf o() —Prepare to launch!

This is a real workhorse of a function with a lot of options, but usage is actually pretky. $tm
helps set up thstruct s you need later on.

A tiny bit of history: it used to be that you would use a function cgkgdost bynane() to do
DNS lookups. Then you'd load that information by hand irgtouat sockaddr_in , and use
that in your calls.

This is no longer necessary, thankfully. (Nor is it desirable, if you want to write lcatearks

for both IPv4 and IPv6!) In these modern times, you now have the fuetieaidr i nf o()

that does all kinds of good stuff for you, including DNS and service name lookups, and fills out
thestruct s you need, besides!

Let's take a look!

#include <sys/types.h>
#include <sys/socket.h>

1/7/2013 12:33 P|

System Calls or Bu http://beej.us/guide/bgnet/output/html/multipagstsalls.htrr

#include <netdb.h>

int getaddrinfo(const char *node, // e.g. "www.example.co m" or IP
const char *service, // e.g. "http" or port number
const struct addrinfo *hints,
struct addrinfo **res);

You give this function three input parameters, and it gives you a pointer to a linkeddlisbf
results.

Thenode parameter is the host name to connect to, or an IP address.

Next is the parametater vi ce, which can be a port number, like "80", or the name of a
particular service (found imhe IANA Port Listor the/ et ¢/ ser vi ces file on your Unix
machine) like "http" or "ftp" or "telnet” or "smtp" or whatever.

Finally, thehi nt s parameter points tosaruct addrinfo that you've already filled out with
relevant information.

Here's a sample call if you're a server who wants to listen on your host's IP addte&sE)@or
Note that this doesn't actually do any listening or network setup; it merely sets tpregwe'll
use later:

int status;
struct addrinfo hints;
struct addrinfo *servinfo; // will point to the results

memset(&hints, 0, sizeof hints); // make sure the struct is e mpty
hints.ai_family = AF_UNSPEC; // don't care IPv4 or IPv6

hints.ai_socktype = SOCK_STREAM; /I TCP stream sockets

hints.ai_flags = Al_PASSIVE; //fill in my IP for me

if ((status = getaddrinfo(NULL, "3490", &hints, &servinfo)) ! =0){
fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(s tatus));
exit(1);

/I servinfo now points to a linked list of 1 or more struct a ddrinfos

/I ... do everything until you don't need servinfo anymore ..

freeaddrinfo(servinfo); // free the linked-list

Notice that | set thai _f am | y to AF_UNSPECthereby saying that | don't care if we use IPv4 or
IPv6. You can set it t&F_INET or AF_INET6 if you want one or the other specifically.

Also, you'll see thél_PASSIVE flag in there; this tellget addr i nf o() to assign the address of

my local host to the socket structures. This is nice because then you don't have to hardcode it. (Or
you can put a specific address in as the first parameget taldr i nf o() where | currently

haveNULL, up there.)

Then we make the call. If there's an erg®t(@addr i nf o() returns non-zero), we can print it out
using the functiomai _strerror (), as you see. If everything works properly, though,

ser vi nf o will point to a linked list oktruct addrinfo s, each of which contains a

struct sockaddr of some kind that we can use later! Nifty!

Finally, when we're eventually all done with the linked list tiettaddr i nf o() so graciously
allocated for us, we can (and should) free it all up with a céll é@addri nfo().

2 of 13 1/7/2013 12:33 P|

System Calls or Bu

3 0f 13

Here's a sample call if you're a client who wants to connect to a particular saye

http://beej.us/guide/bgnet/output/html/multipagstsalls.htrr

"www.example.net" port 3490. Again, this doesn't actually connect, but it sets up the sructure

we'll use later:

int status;
struct addrinfo hints;
struct addrinfo *servinfo; // will point to the results

memset(&hints, 0, sizeof hints); // make sure the struct is e mpty
hints.ai_family = AF_UNSPEC; // don't care IPv4 or IPv6
hints.ai_socktype = SOCK_STREAM; // TCP stream sockets

/I get ready to connect

status = getaddrinfo("www.example.net", "3490", &hints, &serv info);
/I servinfo now points to a linked list of 1 or more struct a ddrinfos
/I etc.

| keep saying thater vi nf o is a linked list with all kinds of address information. Let's write a
quick demo program to show off this informatidinis short programwill print the IP addresses

for whatever host you specify on the command line:

/*
** showip.c -- show IP addresses for a host given on the comm and line
*/

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <netinet/in.h>

int main(int argc, char *argv[])
{
struct addrinfo hints, *res, *p;
int status;
char ipstr[INET6_ADDRSTRLEN];

if (argc 1= 2) {
fprintf(stderr,"usage: showip hostname\n");
return 1,

}

memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC; // AF_INET or AF_INET®6 to fo rce version
hints.ai_socktype = SOCK_STREAM,;

if ((status = getaddrinfo(argv[1], NULL, &hints, &res)) ! =0){
fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(sta tus));
return 2;

}
printf("IP addresses for %s:\n\n", argv[1]);

for(p =res;p !'= NULL; p = p->ai_next) {
void *addr;
char *ipver;

/I get the pointer to the address itself,

/I different fields in IPv4 and IPv6:

if (p->ai_family == AF_INET) { // IPv4
struct sockaddr_in *ipv4 = (struct sockaddr_in *) p->ai_addr;
addr = &(ipv4->sin_addr);
ipver = "IPv4";

1/7/2013 12:33 P|

System Calls or Bu http://beej.us/guide/bgnet/output/html/multipagstsalls.htrr

}else { /[IPv6
struct sockaddr_in6 *ipv6 = (struct sockaddr_in6 *)p->ai_addr;
addr = &(ipv6->sin6_addr);
ipver = "IPv6";

}

/I convert the IP to a string and print it:
inet_ntop(p->ai_family, addr, ipstr, sizeof ipstr);
printf(" %s: %s\n", ipver, ipstr);

}

freeaddrinfo(res); // free the linked list

return O;

}

As you see, the code callst addri nf o() on whatever you pass on the command line, that fills
out the linked list pointed to hyes, and then we can iterate over the list and print stuff out or do
whatever.

(There's a little bit of ugliness there where we have to dig into the differestaype
struct sockaddr s depending on the IP version. Sorry about that! I'm not sure of a better way
around it.)

Sample run! Everyone loves screenshots:

$ showi p www. exanpl e. net
| P addresses for www. exanpl e. net:

I Pv4: 192.0.2.88

$ show p ipv6. exanpl e. com
| P addresses for ipv6. exanpl e.com

| Pv4: 192.0.2.101
| Pv6: 2001: db8:8c00:22::171

Now that we have that under control, we'll use the results we getfroaaddr i nf o() to pass
to other socket functions and, at long last, get our network connection established! Keep readi

5.2. socket () —Get the File Descriptor!

| guess | can put it off no longer—I have to talk aboutstheket () system call. Here's the
breakdown:

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

But what are these arguments? They allow you to say what kind of socket you want (IPv4 or
IPv6, stream or datagram, and TCP or UDP).

It used to be people would hardcode these values, and you can absolutely still dorah (s
PF_INET or PF_INET6, t ype IS SOCK_STREANr SOCK_DGRAMnNdpr ot ocol can be set to
to choose the proper protocol for the giwgre . Or you can caljet pr ot obynane() to look
up the protocol you want, "tcp” or "udp™.)

(ThisPF_INET thing is a close relative of thd=_INET that you can use when initializing the

4 of 13 1/7/2013 12:33 P|

System Calls or Bu http://beej.us/guide/bgnet/output/html/multipagstsalls.htrr

50f 13

si n_fam |y field in yourstruct sockaddr_in . In fact, they're so closely related that they
actually have the same value, and many programmers wilazllet () and pasgF _INET as

the first argument instead BF_| NET. Now, get some milk and cookies, because it's times for a
story. Once upon a time, a long time ago, it was thought that maybe a address familggwhat t
"AF" in "AF_INET" stands for) might support several protocols that were referred to by their
protocol family (what the "PF" inPF_INET" stands for). That didn't happen. And they all lived
happily ever after, The End. So the most correct thing to do is tBFUSSET in your

struct sockaddr_in andPF_INET in your call tosocket () .)

Anyway, enough of that. What you really want to do is use the values from the results of the call
toget addri nf o(), and feed them intsocket () directly like this:

ints;
struct addrinfo hints, *res;

/I do the lookup
/I [pretend we already filled out the "hints" struct]
getaddrinfo("www.example.com”, "http", &hints, &res);

// [again, you should do error-checking on getaddrinfo(), and walk
/I the "res" linked list looking for valid entries instead of just
/I assuming the first one is good (like many of these example s do.)
/I See the section on client/server for real examples.]

s = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

socket () simply returns to you socket descriptor that you can use in later system calls;lor
on error. The global variable r no is set to the error's value (see ¢he no man page for more
details, and a quick note on uskg no in multithreaded programs.)

Fine, fine, fine, but what good is this socket? The answer is that it's really no goodfbaritsel
you need to read on and make more system calls for it to make any sense.

5.3. bi nd() —What port am | on?

Once you have a socket, you might have to associate that socket with a port on your local
machine. (This is commonly done if you're going it en() for incoming connections on a
specific port—multiplayer network games do this when they tell you to "connect to 192.168.5.10
port 3490".) The port number is used by the kernel to match an incoming packet to a certain
process's socket descriptor. If you're going to only be dotegaect () (because you're the

client, not the server), this is probably be unnecessary. Read it anyway, just for kicks.

Here is the synopsis for tlhénd() system call:

#include <sys/types.h>
#include <sys/socket.h>

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

sockf d is the socket file descriptor returneddmcket () . my_addr is a pointer to a
struct sockaddr that contains information about your address, namely, port and IP address.
addr | en is the length in bytes of that address.

Whew. That's a bit to absorb in one chunk. Let's have an example that binds the socket to the
host the program is running on, port 3490:

1/7/2013 12:33 P|

System Calls or Bu http://beej.us/guide/bgnet/output/html/multipagstsalls.htrr

6 of 13

struct addrinfo hints, *res;
int sockfd;

/I first, load up address structs with getaddrinfo():
memset(&hints, 0, sizeof hints);

hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
hints.ai_socktype = SOCK_STREAM,;

hints.ai_flags = Al_PASSIVE; //fill in my IP for me
getaddrinfo(NULL, "3490", &hints, &res);

/I make a socket:

sockfd = socket(res->ai_family, res->ai_socktype, res->ai_pro tocol);

// bind it to the port we passed in to getaddrinfo():

bind(sockfd, res->ai_addr, res->ai_addrlen);

By using theAl_PASSIVE flag, I'm telling the program to bind to the IP of the host it's running
on. If you want to bind to a specific local IP address, drop\theASSIVE and put an IP
address in for the first argumentget addri nf o() .

bi nd() also returnsl on error and sets r no to the error's value.

Lots of old code manually packs thieuct sockaddr_in before callingbi nd() . Obviously
this is IPv4-specific, but there's really nothing stopping you from doing the same thing wat
except that usinget addr i nf o() is going to be easier, generally. Anyway, the old code looks
something like this:

/I MM THIS IS THE OLD WAY !!!

int sockfd;
struct sockaddr_in my_addr;

sockfd = socket(PF_INET, SOCK_STREAM, 0);

my_addr.sin_family = AF_INET,;

my_addr.sin_port = htons(MYPORT); // short, network byte order
my_addr.sin_addr.s_addr = inet_addr("10.12.110.57");

memset(my_addr.sin_zero, \0', sizeof my_addr.sin_zero);

bind(sockfd, (struct sockaddr *)&my_addr, sizeof my_addr);

In the above code, you could also asiMfDDR_ANYto thes_addr field if you wanted to bind
to your local IP address (like ti#¢ PASSIVE flag, above.) The IPv6 version b ADDR_ANYis
a global variablé n6addr _any that is assigned into tis n6_addr field of your

struct sockaddr_in6 . (There is also a mact6ADDR_ANY_INIT that you can use in a
variable initializer.)

Another thing to watch out for when callibgnd() : don't go underboard with your port

numbers. All ports below 1024 are RESERVED (unless you're the superuser)! You can have any
port number above that, right up to 65535 (provided they aren't already being used by another
program.)

Sometimes, you might notice, you try to rerun a serveband() fails, claiming "Address
already in use." What does that mean? Well, a little bit of a socket that was cdnsattle
hanging around in the kernel, and it's hogging the port. You can either wait for it to clear (a
minute or so), or add code to your program allowing it to reuse the port, like this:

1/7/2013 12:33 P|

System Calls or Bu

7 of 13

int yes=1;
/lchar yes='1"; /| Solaris people use this

/I lose the pesky "Address already in use" error message

if (setsockopt(listener,SOL_SOCKET,SO_REUSEADDR,&yes,sizeof(i nt)) == -1) {
perror("setsockopt™);
exit(1);

One small extra final note abcitnd() : there are times when you won't absolutely have to call

it. If you areconnect () ing to a remote machine and you don't care what your local port is (as is
the case witlielnet where you only care about the remote port), you can simplgaaiect (),

it'll check to see if the socket is unbound, andhvithd() it to an unused local port if necessary.

5.4. connect () —Hey, you!

Let's just pretend for a few minutes that you're a telnet application. Your user ocdswaal (just
like in the movieTRON) to get a socket file descriptor. You comply and sadlket () . Next, the
user tells you to connect t@0.12.110.57 " on port 23" (the standard telnet port.) Yow! What
do you do now?

Lucky for you, program, you're now perusing the sectionammect () —how to connect to a
remote host. So read furiously onward! No time to lose!

Theconnect () call is as follows:

#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *serv_addr, int addrl en);

sockf d is our friendly neighborhood socket file descriptor, as returned byotdiest () call,
serv_addr is astruct sockaddr containing the destination port and IP address, and
addr | en is the length in bytes of the server address structure.

All of this information can be gleaned from the results ofgidteaddr i nf o() call, which rocks.

Is this starting to make more sense? | can't hear you from here, so I'll just have toahdps. t
Let's have an example where we make a socket connection to "www.example.com", port 3490:

struct addrinfo hints, *res;
int sockfd;

/I first, load up address structs with getaddrinfo():

memset(&hints, 0, sizeof hints);

hints.ai_family = AF_UNSPEC,;

hints.ai_socktype = SOCK_STREAM,;

getaddrinfo("www.example.com”, "3490", &hints, &res);

/I make a socket:

sockfd = socket(res->ai_family, res->ai_socktype, res->ai_pro tocol);

/I connect!

connect(sockfd, res->ai_addr, res->ai_addrlen);

1/7/2013 12:33 P|

http://beej.us/guide/bgnet/output/html/multipagstsalls.htrr

System Calls or Bu http://beej.us/guide/bgnet/output/html/multipagstsalls.htrr

8 of 13

Again, old-school programs filled out their owstnuct sockaddr_in S to pass teonnect ().
You can do that if you want to. See the similar note irbthel() section above.

Be sure to check the return value froomnect () —it'll return-1 on error and set the variable
errno.

Also, notice that we didn't cali nd() . Basically, we don't care about our local port number; we
only care where we're going (the remote port). The kernel will choose a local portdodubke
site we connect to will automatically get this information from us. No worries.

5.5. 11 st en() —Will somebody please call me?

Ok, time for a change of pace. What if you don't want to connect to a remote host. Say, just for
kicks, that you want to wait for incoming connections and handle them in some way. The process
is two step: first youii st en() , then youaccept () (see below.)

The listen call is fairly simple, but requires a bit of explanation:

|int listen(int sockfd, int backlog); |

sockf d is the usual socket file descriptor from dwket () system callbackl og is the

number of connections allowed on the incoming queue. What does that mean? Well, incoming
connections are going to wait in this queue until yocept () them (see below) and this is the
limit on how many can queue up. Most systems silently limit this number to about 20; you can
probably get away with setting it &or 10.

Again, as per usudlj st en() returns1 and set&rrno on error.

Well, as you can probably imagine, we need tokiald() before we calli st en() so that the
server is running on a specific port. (You have to be able to tell your buddies which port to
connect to!) So if you're going to be listening for incoming connections, the sequence of system
calls you'll make is:

getaddrinfo();

socket();

bind();

listen();

/* accept() goes here */

I'll just leave that in the place of sample code, since it's fairly self-explgnérhe code in the
accept () section, below, is more complete.) The really tricky part of this whole sha-bang is the
calltoaccept ().

5.6. accept () —"Thank you for calling port 3490."

Get ready—theaccept () call is kinda weird! What's going to happen is this: someone far far
away will try toconnect () to your machine on a port that you &rest en() ing on. Their
connection will be queued up waiting todiecept () ed. You callccept () and you tell it to

get the pending connection. It'll return to yolbrand new socket file descriptor to use for this
single connection! That's right, suddenly you hian@socket file descriptors for the price of

one! The original one is still listening for more new connections, and the newly created one
finally ready tosend() andrecv(). We're there!

1/7/2013 12:33 P|

System Calls or Bu

9 of 13

The call is as follows:

#include <sys/types.h>
#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *addr, socklen_t *addr len);

sockf d is thel i st en() ing socket descriptor. Easy enougtdr will usually be a pointer to a
localstruct sockaddr_storage . This is where the information about the incoming
connection will go (and with it you can determine which host is calling you from which port).
addr | en is a local integer variable that should be seizeof(struct

sockaddr_storage) before its address is passe@taept (). accept () will not put more
than that many bytes intaldr . If it puts fewer in, it'll change the value addr | en to reflect
that.

Guess whataccept () returnsl and set&rrno if an error occurs. Betcha didn't figure that.

Like before, this is a bunch to absorb in one chunk, so here's a sample code fragment for your
perusal:

#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define MYPORT "3490" // the port users will be connecting t o}
#define BACKLOG 10 // how many pending connections queue will hold

int main(void)
struct sockaddr_storage their_addr;
socklen_t addr_size;
struct addrinfo hints, *res;
int sockfd, new_fd;
/I 1! don't forget your error checking for these calls !!
/I first, load up address structs with getaddrinfo():
memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whiche ver
hints.ai_socktype = SOCK_STREAM,;
hints.ai_flags = Al_PASSIVE; //fill in my IP for me
getaddrinfo(NULL, MYPORT, &hints, &res);
/I make a socket, bind it, and listen on it:
sockfd = socket(res->ai_family, res->ai_socktype, res->ai _protocol);
bind(sockfd, res->ai_addr, res->ai_addrlen);
listen(sockfd, BACKLOG);
/l now accept an incoming connection:

addr_size = sizeof their_addr;
new_fd = accept(sockfd, (struct sockaddr *)&their_addr, & addr_size);

/I ready to communicate on socket descriptor new_fd!

Again, note that we will use the socket descriptw_f d for allsend() andrecv() calls. If
you're only getting one single connection ever, youctarse() the listeningsockf d in order to

1/7/2013 12:33 P|

http://beej.us/guide/bgnet/output/html/multipagstsalls.htrr

System Calls or Bu http://beej.us/guide/bgnet/output/html/multipagstsalls.htrr
prevent more incoming connections on the same port, if you so desire.

5.7.send() and r ecv() —Talk to me, baby!

These two functions are for communicating over stream sockets or connected datadjeis
If you want to use regular unconnected datagram sockets, you'll need to see the section on
sendt o() andrecvfrom), below.

Thesend() call:

|int send(int sockfd, const void *msg, int len, int flags); |

sockf d is the socket descriptor you want to send data to (whether it's the one returned by
socket () or the one you got withccept () .) msg is a pointer to the data you want to send, and
| en is the length of that data in bytes. Justf$eigs t0 0. (See thesend() man page for more
information concerning flags.)

Some sample code might be:

char *msg = "Beej was here!";
int len, bytes_sent;

ien = strlen(msg);
bytes_sent = send(sockfd, msg, len, 0);

send() returns the number of bytes actually sent otlismight be less than the number you

told it to send! See, sometimes you tell it to send a whole gob of data and it just can't handle it.
It'll fire off as much of the data as it can, and trust you to send the rest later. Bennéthe

value returned bgend() doesn't match the valuelien, it's up to you to send the rest of the
string. The good news is this: if the packet is small (less than 1K or so)ptatadbly manage to
send the whole thing all in one go. Agaih,is returned on error, aret r no is set to the error
number.

Therecv() call is similar in many respects:

|int recv(int sockfd, void *buf, int len, int flags); |

sockf d is the socket descriptor to read frdmf is the buffer to read the information inten
is the maximum length of the buffer, afhidags can again be set @ (See the ecv() man page
for flag information.)

recv() returns the number of bytes actually read into the buffet, @n error (wither r no set,
accordingly.)

Wait! recv() can returro. This can mean only one thing: the remote side has closed the
connection on you! A return value @fisr ecv() 's way of letting you know this has occurred.

There, that was easy, wasn't it? You can now pass data back and forth on stream sbheledts! W
You're a Unix Network Programmer!

10 of 13 1/7/2013 12:33 P|

System Calls or Bu http://beej.us/guide/bgnet/output/html/multipagstsalls.htrr

5.8.sendt o() and recvfron()—Talk to me, DGRAM-style

"This is all fine and dandy,” | hear you saying, "but where does this leave me with unconnected
datagram sockets?" No problemo, amigo. We have just the thing.

Since datagram sockets aren't connected to a remote host, guess which pieceatfanfaren
need to give before we send a packet? That's right! The destination addresshelea®p:

int sendto(int sockfd, const void *msg, int len, unsigned int flags,
const struct sockaddr *to, socklen_t tolen);

As you can see, this call is basically the same as the aalhtt{) with the addition of two other
pieces of informatiort. o is a pointer to atruct sockaddr (which will probably be another
struct sockaddr_in or struct sockaddr_in6 or struct sockaddr_storage that you
cast at the last minute) which contains the destination IP address andpent,. anint
deep-down, can simply be setsizeof *to or sizeof(struct sockaddr_storage)

To get your hands on the destination address structure, you'll probably either get it from
get addri nfo(), or fromrecvfron(), below, or you'll fill it out by hand.

Just like withsend() , sendt o() returns the number of bytes actually sent (which, again, might
be less than the number of bytes you told it to send!}, @n error.

Equally similar are ecv() andr ecvfron(). The synopsis afecvfrom() is:

int recvfrom(int sockfd, void *buf, int len, unsigned int fla gs,
struct sockaddr *from, int *fromlen);

Again, this is just like ecv() with the addition of a couple fieldst omis a pointer to a local
struct sockaddr_storage that will be filled with the IP address and port of the originating
machinefroni en is a pointer to a locaélt that should be initialized tgizeof *from or
sizeof(struct sockaddr_storage) . When the function returniy ond en will contain the
length of the address actually stored irom

recvfron() returns the number of bytes received;loron error (wither r no set accordingly.)

So, here's a question: why do we stsect sockaddr_storage as the socket type? Why not
struct sockaddr_in ? Because, you see, we want to not tie ourselves down to IPv4 or IPVv6.
So we use the genestuct sockaddr_storage which we know will be big enough for

either.

(So... here's another question: why istalict sockaddr itself big enough for any address?

We even cast the general-purpesact sockaddr_storage to the general-purpose

struct sockaddr I Seems extraneous and redundant, huh. The answer is, it just isn't big
enough, and I'd guess that changing it at this point would be Problematic. So they made a new
one.)

Remember, if yokonnect () a datagram socket, you can then simplysesed() andr ecv()
for all your transactions. The socket itself is still a datagram socket and #etgstill use UDP,
but the socket interface will automatically add the destination and source intorrimatyou.

5.9. cl ose() and shut down() —Get outta my face!

11 of 13 1/7/2013 12:33 P|

System Calls or Bu http://beej.us/guide/bgnet/output/html/multipagstsalls.htrr

12 of 13

Whew! You've beesend() ing andr ecv() ing data all day long, and you've had it. You're ready
to close the connection on your socket descriptor. This is easy. You can just use the regular Uni
file descriptorcl ose() function:

|c|ose(sockfd); |

This will prevent any more reads and writes to the socket. Anyone attempting to reae thevri
socket on the remote end will receive an error.

Just in case you want a little more control over how the socket closes, you can use the
shut down() function. It allows you to cut off communication in a certain direction, or both
ways (just likecl ose() does.) Synopsis:

|int shutdown(int sockfd, int how); |

sockf d is the socket file descriptor you want to shutdown, laswdis one of the following:

0 Further receives are disallowed
1 Further sends are disallowed
2 Further sends and receives are disallowed ¢likese())

shut down() returnsd on success, and on error (wither r no set accordingly.)

If you deign to usehut down() on unconnected datagram sockets, it will simply make the
socket unavailable for furtheend() andrecv() calls (remember that you can use these if you
connect () your datagram socket.)

It's important to note thathut down() doesn't actually close the file descriptor—it just changes
its usability. To free a socket descriptor, you need talsse() .

Nothing to it.

(Except to remember that if you're using Windows and Winsock that you should call
cl osesocket () instead otl ose() .)

5.10. get peer nane() —Who are you?
This function is so easy.
It's so easy, | almost didn't give it its own section. But here it is anyway.

The functionget peer nane() will tell you who is at the other end of a connected stream socket.
The synopsis:

#include <sys/socket.h>

int getpeername(int sockfd, struct sockaddr *addr, int *addrl en);

sockf d is the descriptor of the connected stream soekielt, is a pointer to a

1/7/2013 12:33 P|

System Calls or Bu http://beej.us/guide/bgnet/output/html/multipagstsalls.htrr

13 of 13

struct sockaddr (or astruct sockaddr_in) that will hold the information about the other
side of the connection, amddr | en is a pointer to aimt , that should be initialized tozeof
*addr or sizeof(struct sockaddr)

The function returnsl on error and sets r no accordingly.

Once you have their address, you caniusg _nt op(), get nanei nf o(), or

get host byaddr () to print or get more information. No, you can't get their login name. (Ok, ok.
If the other computer is running an ident daemon, this is possible. This, however, is beyond the
scope of this document. Check &®FEC 1413for more info.)

5.11. get host nanme() —Who am 1?

Even easier thaget peer nanme() is the functiorget host nane() . It returns the name of the
computer that your program is running on. The name can then be ugedhagt bynane() ,
below, to determine the IP address of your local machine.

What could be more fun? | could think of a few things, but they don't pertain to socket
programming. Anyway, here's the breakdown:

#include <unistd.h>

int gethostname(char *hostname, size_t size);

The arguments are simplest nane is a pointer to an array of chars that will contain the
hostname upon the function's return, ande is the length in bytes of thest nane array.

The function returnd on successful completion, arid on error, settingr r no as usual.

<< Prev Beej's Guide to Network Programming Next >>

1/7/2013 12:33 P|

