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1 Introduction

Tonight we will begin to analyze some formal models of epidemics. In all of these initial
lectures we will make some simplifying assumptions with which you may or may not be
comfortable. Feel free to point out where you think these assumptions may or may not be
true. One of the goals of the course is to prepare you to apply these models to empirical
data and to make policy recommendations regarding the spread of epidemics. However I
want to point out that just because we will make simplifying assumptions does not make
the models invalid or of no use. As an example consider the model of supply and demand
from your introductory economics course. There are lots of assumptions buried within the
model, some of which you might not agree with, but that doesn’t make the model useless.

Similarly, we will make some assumptions early on in this course that are not strictly true.
Some of these we will modify later in the course to make more realistic models and attempt
to make better predictions... some of them are still open topics on which researchers are
working. So again, I stress that you should bring up questions about modelling assumptions.
Some of your questions we will be able to quickly and directly address in class. Some of
them may take a little or a lot of thought to answer. And I’'m sure some of them will make
great paper or thesis topics.

We have two goals tonight. One is to introduce you to difference equations and their use
in modelling epidemics. And the other is to begin to develop formal models of epidemics
that will be useful later in the course when we enter the applied realm.

2 The First Model

To begin let us start with the simplest possible model of an epidemic. It will be a simplified
version of what is called an SIS model. The model we will develop will be a dynamic model.
We want to monitor the number of individuals in the population who are infected with the
disease in which we are interested. In some instances it will be useful to think in terms of the
total number of people infected in the population. This will be something like 400 people
or 4 million people. In other cases we will want to consider the fraction of the population
infected. This will be something like 5 percent or 53 percent. Let us begin to develop some
notation. We will use the variable ¢ to denote the time period in most of the models we
discuss. (Some papers we might read will use n to indicate the time period.) And let us use



N; to denote the total size of the population in period ¢. In this first model the population
will be divided up into two groups of people, those that have been infected by the disease
and are infective, and those that are susceptible to being infected by the disease. We will
label the number of those infected in period t as I; and the number susceptible in period ¢
as S;. Where I; + .5, = N;. You may have guessed by now that the name SIS comes from
the two population groups Susceptible and Infected. Individuals go from being susceptible
to a disease to being infected. And then they recover and again become susceptible. Thus
the progression of the disease from the standpoint of an individual is susceptible - infected
- susceptible or SIS.

Individuals potentially move from the susceptible to the infected group when a susceptible
person comes in contact with an infected person. What counts as a contact varies with the
disease. Sometimes diseases are transmitted through sexual contact or are carried in blood
as in HIV. In other cases one only needs to be near a person as the disease is carried via
the air we breath as in SARS or influenza. In addition even if you come in contact with
someone it is not always guaranteed that the diseased will be transmitted. For instance
only a small fraction of sexual contacts result in the transmission of HIV. Finally once
someone is infected it takes some amount of time, or some number of periods in our model
for the infected individual to move back to the susceptible pool. (In some cases the infected
individual never becomes susceptible again as they become immune to the disease after they
recover. These models will be the topic of next week’s discussion on susceptible - infected -
removed, or SIR, models.)

Assume that N; = N for all t. In other words there is a constant population size. Further
let us assume that all the people in the population are the same people from period to period.
Note that these are two different assumptions. Can you think of an example where one does
not imply the other? One example would be if there were equal birth and death rates in
the population. Then the population size would be constant but some of the people in the
population would be different each period. For now we will ignore this and assume that
there is a constant unchanging population.

Suppose we begin in the initial period with I infected individuals. In epidemics we are
interested in how the disease will spread. Thus what we really want to know in many cases
is how many infected individuals there will be in the next period. In other words we want
to know I, and then I and then .... We want to know how the spread of the disease will
progress.

Let us begin by looking at the transition from period 0 to period 1. We begin period
0 with Iy infected individuals. We can call this the state of the system at time 0. New
individuals get infected by coming in contact with members of the infected population. Let
us assume that each infected person contacts v non-infected people in each period. Thus the
number of possible new infections is vIy. But not all of the contacts result in an infection.
Suppose that only a percent of contacts result in an infection. Thus each infected individual
results in ya new infections in each period. Further to keep things simple let us assume that
each infected person in period ¢ moves back to the susceptible pool in the next period ¢ + 1.
Let us now write out an equation that describes this process:
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Note that since we assumed that each infected person recovers int he next period that the
I; — I, terms will cancel in each period. Therefore we ignore them in the following equations.
Now let us write the equation for period 2:

Ir = ~vyaly (2)

This is the same equation but with different time subscripts. Now if we substitute
Equation 1 into Equation 2 we get:

I = yayaly = (ya)’Iy (3)

Similarly, we would get the following for I3:

Iy = (ya)*Iy (4)

You should start to see a pattern here. And the general solution to this difference equation
is:

I = (ya)'ly (5)

The number of people currently infected in period ¢ is the product of the contact and
transmission parameters raised to the power ¢ multiplied by the initial size of the infected
population.

Now, let us see if we can figure out how this system will behave. Let us look at the
number of infected persons in period ¢ where t is far into the future. In other words ¢ is
large, say 1,000. Suppose that there is one infected person in the initial period and that v is
5 and « is 0.1. Will there be many people infected or a few at period 1,0007 avy = 0.5. So
we expect that there will be 0.51%° people infected in period 1,000. You can check on your
calculators if you like but this is a VERY small number, essentially 0. What if we increase «
to .37 Now we get 1.51909 3 VERY big number! What happens if « is 0.2? We get 11090 = 1.
Lets try one more, let Iy be 1,000,000 and « be 0.19. Thus in period 1,000 we would have
(0.19 % 5)19%9 % 1,000, 000 = 0.95'%% % 1,000, 000 which again is essentially 0.

What you have probably already noticed is that if ay < 1 the number of infected in-
dividuals decreases to 0 very rapidly; the disease disappears. If ay > 1 the number of
infected individuals keeps increasing; the disease spreads throughout the population. This
is sometimes called the epidemic threshold. Now what does this really mean? How can we
interpret this result? If the number of contacts times the transmission rate is less than one
this means that each infected person infects less than one person on average. So, the number
of infected individuals will decrease. It is like the reproduction/ population models you may
have studied, if each person has less than one offspring the population will die out. But if
the average number of offspring is greater than one the population will grow. Just like our
model when the average number of people infected is greater than one; the disease continues
to spread to a larger and larger fraction of the population. Thus we reach the epidemic
threshold whenever greater than one person is infected by each infected person.

The model of this section has some weaknesses that we will correct in the next section.
But the main point of the model was that we can understand most of what is going on if
we look at just a couple parameters in the model. And, from a public policy standpoint if



we can alter those parameters we can control an epidemic. As an example, if we can limit
the number of contacts of infected people with non-infected people so that we are below the
epidemic threshold we can end the epidemic.

3 A Full SIS Model

The model of the last section was kept overly simplistic in order to introduce you to some
key ideas of the course. First, you were introduced to using difference equations to study
a diffusion process. And second, you were introduced to some key parameters that we will
use throughout the course. In this section we more fully develop the SIS model to a form
that you are likely to encounter in policy and research discussions of diseases that fit the SIS
framework.

First, in the last section we assumed that each contact of an infected person was with
a non-infected, or susceptible, person. It is more realistic to assume that the number of
susceptible contacts is a function of the number of susceptible persons in the population.
Second, we assumed that each infected person was fully recovered after one time period.
This may be true if we are measuring time in weeks or months, but it probably isn’t true
for some diseases if we are measuring time in days. Thus we would like our model to allow
for the possibility that it takes multiple time periods for someone to move from the infected
group back to the susceptible group.

We can do this in the following way. First let us define two new state variables that
will measure the percentage of the total population that are susceptible and infected. Let
iy = I;/N; be the percent of the population that is currently infected. Define s, = S;/N;
as the percent of the population that is currently susceptible. We also will define a new
parameter x that measures the percent of the population that recovers from a disease each
period. Thus if the time to recover is 3 time periods then x = 1/3. This means that one-
third of the population should recover each period on average. (It may seem that this is a
weird assumption since it may be that there are different numbers of people infected in each
period. Thus different numbers of people should recover each period. We will show in a
moment that if we are in steady state this assumption will hold. If you still have a question
on this ask after we have finished this lecture.)

We are now ready to write a system of equations that will describe our full SIS model of
epidemics:

It+1 = It — /'i]t —+ C(’)/St[t (6)

St+1 = St + :‘i_[t - O[’}/Stlt (7)

We have xI; individuals who recover each period and thus leave the infected group and
re-enter the susceptible group. And we have ays;[; individuals who enter the infected group
and leave the susceptible group. Notice that the change in the infected group always equals
the change in the susceptible group when we have a constant population. Thus S; + [, =
Sti1 + 141 = N if the population is constant.

Equivalently we can write these equations using our proportion state variables:



it+1 = it — /‘f/L.t + O{’}/Stit (8)

Sp41 = S¢ + Kiy — arySyiy 9)

Now, with these equations written we can use them to understand the epidemic threshold
in the SIS model. First let us ask the question: when will the number of infected individuals
be increasing? Intuitively we can reason through this process by just looking at the equations
and our box diagram. If more people flow into the infective state than flow out this means
that the level of infectives is increasing. If the opposite is true (more flow out than in)
the level of infectives is decreasing. Thus our epidemic threshold is determined by whether
Kiy > QryStly O Kip < QUYSyiy.

If kK > ays, this means that more people leave the infective state than enter it. Thus the
level of the disease is decreasing. If kK < a-ys; this means that more people enter the infective
state than leave it. Thus the level of the disease is increasing. Now, another way to write
this inequality is: =*t. This is the epidemic threshold for the SIS model. If the fraction is
greater than one the level of infectives increases (more than one person is infected by each
infective) And if it is less than one the level of infectives decreases (fewer than one person is
infected by each infective.)

Now one thing different about this model compared to our previous one is that one of
our state variables enters the equation for the epidemic threshold, s;. If #I** > 1 the disease
spreads and the number of susceptible individuals decreases. Thus the fraction gets smaller
in the next period. If “X* < 1 the disease begins to die out and the number of susceptibles
increases. Thus the fraction gets bigger in the next period. For those of you who have taken
economics courses this reasoning may sound familiar. It may sound like a process that is
working its way to equilibrium. And that is exactly what we will see in many cases here. The
lack of susceptible individuals slows the epidemic when there are many infective individuals;
and many susceptible individuals increases the spread of the epidemic when there are few
infectives. The number of available hosts (or susceptible individuals) introduces negative
feedback into the SIS model.

What would be the case where the disease reaches equilibrium? By this I mean the
number of susceptibles and infectives is in steady state; both are constant proportions of the
population. This would be the case if <t =1 or s; = O% This would define a steady state
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of the system where s; and 7, are constant in all periods.

4 Steady State

We are now ready to analyze our first full model of epidemics a little more formally by
looking at the steady state of our system of equations. Again, for those of you who have
taken previous economics courses you may think of a steady state as an equilibrium: a
situation where a system is not changing. In this model we will think of a steady state as
a state where our state variables, I; and S;, do not change from period to period; they are
constant. To find the steady state we need to find a solution to our system of equation above
where S; = S;11 and I; = ;1. One way to do this is to drop the time subscript on our



equations above and solve for s and . Thus we are looking for a solution to the following
set of equations:

i =1 — Ki+ aysi (10)

§=5+ Ki— aysi (11)

To solve these equations first rewrite Equation 10 as:

Kt = Qysi (12)
Which can then be written as:
K
= — 13
=L (13)

This is the steady state value of the proportion of the population that is susceptible. It
is the same equation as we found above from our intuitive understanding of the epidemic.
And since we know that s; + 7, = 1, we know that the steady state value of the infected
proportion of the population is iy =1 — s; or :

i=1-— (14)
ay

Note the intuitive properties of these equations. As the number of contacts of an in-
fected person or the transmission probability increases the number of susceptible individuals
decreases (and the number of infected individuals increases). And as the time to recover in-
creases (meaning x decreases) the number of susceptible individuals decreases (the number
of infected people increases.)

Next we will use Excel to view how parameter changes affect these outcomes and to check
our analytical predictions of steady state values of susceptibles and infectives.

5 Computational Implementation

In this section we will use an Excel spreadsheet to view the behavior of this dynamic system.
You can find the spreadsheet on our course web-page. To start note that the only time that
a and v appear in the equations above is as the product ay. So, let’s just combine these
into one parameter 3. Let us start with k = 0.5 and = 0.8. This means that each infected
person recovers in two time periods (again you may think of a time period as perhaps a
day) and each infected person potentially contacts and infects an average of 0.8 persons per
time period. We also need to specify an initial fraction of the infected population. Let us
choose this value to be i = 0.01. What happens when you input these parameters into
the spreadsheet? You should see that the fraction of infected individuals in the population
increases up to about 37% of the population in the figure. We can use our solution of the
difference equations to figure out exactly what the level of infected individuals is. Recall

that in steady state we expect that there will be 1 — % infected individuals. In our example

that means that there should be 1 — % = 3/8 of the population infected in steady state.



And if we checked closely that is exactly what we find in our spreadsheet. Now leave the
infection and recovery parameters the same but increase the fraction of the initial infected
population to 0.8. Now you should see that the fraction infected steadily decreases down to
the steady level of 3/8. It doesn’t matter what the fraction of the infected you start with,
your steady state is determined by the infection and recovery parameters of the model. We
would say that the steady state infection level is independent of the initial state.

Now let us see how the parameters affect the steady state level. First increase the recovery
rate, k to 0.6. The steady fraction of infected individuals drops to 1/4 of the population. If
we increase k further to 0.7 the steady state fraction drops further. What should happen if
we increase k to 0.87 The disease should disappear. From our analytical results we should
see that if k = 3 the susceptible fraction of the population goes to 1.0 and the infected
fraction of the population goes to 0.

Set K = 1 an leave the other parameters the same. This means that we are returning
to the case where each infected person recovers in the period immediately following their
infection. Why doesn’t the steady state fraction of susceptible increase further? Because it
can’t be greater than 1.0. Also notice that even though we start with 80% of the population
infected that the disease dies out very quickly.

Now let us view the effect of 5. First lower 3 to 0.6 from 0.8. You should notice that the
disease dies out even quicker now. As we decrease (3 we are lowering the number of contacts
of each infected person. Thus the disease spreads more slowly. If we increase § to 1.2 we see
that we again have a steady state level of the disease at 1/1.2 = 1/6 of the population. As
we keep increasing the number of contacts we see that the infected fraction of the population
continues to increase. Try = 1.5, = 2.0, and 3 = 2.5.

Now before we increase the number f contacts further let us quickly revisit our system of
equations with these parameters. We have kK = 1.0 and a vy = 3 = 2.5. So we have:

it—l—l - Z.t - it + 2.5(8{%) - 25(1 - it)it (15)

Now what I want you to notice here is that this is a nonlinear equation. Thus the system
might be messy for some parameter values. Now let us increase 3 to 2.8. You should notice
in the picture that there no longer seems to be a stable steady state. The fraction of infecteds
has begun to cycle be tween two values. Increase 3 to 3.0. Again you should observe cycles
but this time the cycles are larger with the fraction of the infected population bouncing
between 32% and 35% percent and back to 32% again on each consecutive period. If we
continue to increase § we begin to see cycles of greater than two periods. And finally if we
increase (3 nearer to 4.0 we see no discernable pattern in the time series. We have entered
the chaotic region of the parameter space for this system of nonlinear equations. While we
will not delve into the details of non-linear dynamics what you should know is that a chaotic
system means that given any starting point you cannot predict the future state of the system
without running through each step of the equations. In other words if you start the system
with 80% infected and observe that there are 51% infected after 50 periods. And you start
the system again at 79% infected or 81% infected there is no guarantee that in period 50
there will be anything close to 51% infected for these starting conditions. (in fact for 5 = 4.0
there are 16% infected in period 50 if you start the system at 79% infected and 38% infected
if you start the system at 81% infected.) The important point here is that a time series



does you little good without an understanding of the underlying model that the universe has
chosen. Looking at this data with almost any statistical procedure would return the answer
that the system is random.

What is happening in the system is that each infected person causes a large number of
contacts to become infected in the next period. But if there are a large number of infected
individuals then there are very few people to infect. So, it is possible to get these wild
fluctuations.

Wild fluctuations such as these are not the focus of this course. But I want you to be
aware that many of the systems we will study are non-linear. Thus there is always the
possibility that they will not be well behaved. Fortunately for you (and me) we will deal
mostly with well behaved systems in this course where the parameters of interest will give
us nice well behaved answers.

6 Homework

For homework I want you to solve the following problems assuming an SIS model of an
epidemic. In order to simplify the problems you may assume that no death or birth occurs.

1. Suppose that Iy = 25%, k =1/4 and § = 1/2.

a) What is the fraction of susceptible individuals in the next period (period 1).

b) What is the steady state state level of infections in the population.

¢) Suppose that we lengthen the time it takes to recover from the disease. Will the steady
fraction of susceptible individuals increase or decrease?

2. Suppose that there are two identical strains of a virus except for the fact that one strain
can survive in the air for two minutes and one strain can survive for 5 minutes. Which strain
do you think will cause there to be more infected individuals? Explain your answer using
the equations and notation in our lesson today.

3. Suppose that Iy = 25%, a = .1 and v = 3. Individuals recover from the disease in five
time periods.

a) Write the equations describing the SIS model with these parameters.

b) What is the steady state fraction of susceptible individuals?

c) What is the steady state fraction of infected individuals?

4. Suppose that Iy = 25%, k = 0.4, a = .1 and v = 3.
a) Write the equations describing the SIS model with these parameters.
b) What is the steady state fraction of susceptible individuals?
c) What is the steady state fraction of infected individuals?



