 ALOK ADVIN KACHHAP

04cs1005

[image: image1]

major issues concerning compiler construction-

· Semantics

· Architecture

 RISC/ CISC} the compiler will have to

 use THE FACILITIES underlying the

 architecture.

· OS and system software-

 operating system specific

 LOADER

compiler obj OS loads the rogram

 in memory

Linker links library, other obj.

· Error Handling-

  how to intelligently replace error

 condition with a feasible alternative.

  AID in debugging

· Optimization-

  less CPU usage

  linked with architecture

· Runtime Environment

· Speed of compilation

[image: image2]

[image: image3]
Interaction of lexical analyzer with parser

CATEGORY OF TOKEN —

· identifiers

· constants 30, 3.5

· keywords while, do

· operator +, -

· punctuations ;

· literals “helloworld”

How do we IDENTIFY TOKENS?

· By Lexical Analyzer

 Tokens are regular EXPRESSIONS

 (HENCE recognized by DFA / NFA)

Regular Expression- (r.e.)

Simplest C program:

main ()

{

}

Є is a regular expression denoting the language {Є }

If a is an alphabet, then a denotes a r.e. for L (a).

If r1 and r2 are two r.e. then

· r1|R2 IS a r.e. L1 U L2, r1.r2 is a r.e. L1.L2

· r1* is a r.e. L1* , (r1) is a r.e. L1

[image: image4]
· (0|1)* : all possible binary strings of 0’s and 1’S (APBS)

· (0|1)(0|1)* : non empty APBS

· 0(0|1)*1 : APBS starting with 0 ending with 1

· ((Є|0)1*)* : APBS

· (0|1)*0(0|1)(0|1) : APBS of at least length 3 with a 0 in the 3rd last position

· Identifiers of C language –

 (_ | a-z | A-Z)(_ | a-z | A-Z | 0-9)*

· Binary string such that 0 always follow 1

 (1|10)*

· IP address

 ([0-1] [0-9] [0-9] [0-9] | 2 [0-4] [0-9] | 25 [0-5]).

 ([0-1] [0-9][0-9] [0-9] | 2 [0-4] [0-9] | 25 [0-5]).

 ([0-1] [0-9] [0-9] [0-9] | 2 [0-4] [0-9] | 25 [0-5]).

 ([0-1] [0-9] [0-9] [0-9] | 2 [0-4] [0-9] | 25 [0-5])

· Email address (EX. for Gmail)

 alpha(alphanumeric)*(.(alphanumeric)+)*@(alpha)+(.(alpha)+)+

How do we write Lexical Analyzer

[image: image5]

[image: image6]

LEXIVAL

ANALYZER

PARSER

SYMBOL TABLE

PRODUCES

TOKENS

TOKEN

REQUEST FOR TOKEN

lexfile.l

lex compiler

lex.yy.c

lex.yy.c

a.out

C compiler

input

tokens

 a.out

LOADER

