J.Siddhartha Reddy

04CS1028
ERROR RECOVERY IN LR PARSING

An LR Parser will detect an error when it consults parsing table and finds an error entry. A canonical parser will never make even a single reduction before announcing an error. The SLR and LALR parsers may take several reductions before announcing an error, but they will never shift an erroneous input into the stack..

We can implement two modes of recovery :

· Panic Mode: We scan down the stack until a state s with a goto on a particular non-terminal A is found. Zero or more input symbols are then discarded until a symbol a is found that can legitimately follow A. The parser then stack the state goto[s, A] and resume normal parsing. Normally there may be many choices for the non terminal A. Normally these would be non-terminals representing major program pieces, such as an expression, statement, or block.
· Phrase Level Recovery: It is implemented by examining each error entry in the LR parsing table and deciding on the basis of language the most likely program error that give rise to that error entry in the LR parsing table. An appropriate error procedure than can be implemented; presumably the top of the stack and/or first input symbols would be modified in a way deemed appropriate for each error.
As an example consider the grammar (1).

The parsing table contains error routines that have effect of detecting error before any shift move takes place.

Error routines :

e1:

This routine is called from states 0,2,4 and 5, all of which the beginning of the operand, either an id of left parenthesis. Instead an operator, + or *, or the end of input was found.

Action: Push an imaginary id on to the stack and cover it with a state 3. (the goto of the states 0, 2, 4 and 5)

Print: Issue diagnostic “missing operand”

	STATE
	Action

 id + * () $
	goto

	0
	 s3 e1 e1 s2 e2 e1
	1

	1
	 e3 s4 s5 e3 e2 acc
	

	2
	 s3 e1 e1 s2 e2 e1
	6

	3
	 r4 r4 r4 r4 r4 r4
	

	4
	 s3 e1 e1 s2 e2 e1
	7

	5
	 s3 e1 e1 s2 e2 e1
	8

	6
	 e3 s4 s5 e3 s9 e4
	

	7
	 r1 r1 s5 r1 r1 r1
	

	8
	 r2 r2 r2 r2 r2 r2
	

	9
	 r3 r3 r3 r3 r3 r3
	

e2:
This routine is called from states 0, 1, 2, 4 and 5 on the finding a right parenthesis.

Action: Remove the right parenthesis from the input

Print: Issue diagnostic “Unbalanced right parenthesis”

e3:

This routine is called from states 1 or 6 when expecting an operator, and an id or right parenthesis is found.

Action: Push + onto the stack and cover it with state 4.

Print: Issue diagnostic “Missing operator”

e4:

This routine is called from state 6 when the end of input is found while expecting operator or a right parenthesis.

Action: Push a right parenthesis onto the stack and cover it with a state 9.

Print: Issue diagnostic “Missing right parenthesis”
PAGE
1

