TOP–DOWN PARSING

It is an attempt to find a leftmost derivation of a string (expanding the leftmost non-terminal at every step).

Prior to top-down parsing, left-recursion must be compulsorily removed .

Left-factoring should be done, as it helps remove removable ambiguity.

Left-factoring

“Left factoring is a grammar transformation that is useful for producing a grammar suitable for predictive parsing. The basic idea is that when it is not clear which of two alternative productions to use to expand a non-terminal A, we may be able to rewrite the A-productions to defer the decision until we have seen enough of the input to make the right choice.”

- Aho,Ullman,Sethi

Here is a grammar rule that is ambiguous:

A -> xP1 | xP2 | xP3 | xP4 ….| xPn

Where x & Pi’s are strings of terminals and non-terminals and x !=e

If we rewrite it as

A->xP’

P’ -> P1|P2|P3 …|Pn

We call that the grammar has been “left-factored”, and the apparent ambiguity has been removed. Repeating this for every rule left-factors a grammar completely.

Example:

stmt -> if exp then stmt endif |
 if exp then stmt endif else stmt endif
We can left factor it as follows :

stmt -> if exp then stmt endif ELSEFUNC

ELSEFUNC -> else stmt endif | e (epsilon)

Thereby removing the ambiguity

 Recursive Descent Parsing

It is the most general form of top-down parsing. It may involve backtracking, that is making repeated scans of input, to obtain the correct expansion of the leftmost non-terminal. Unless the grammar is ambiguous or left-recursive, it finds a suitable parse tree

But, recursive-descent parsers are not very common as programming language constructs can be parsed without resorting to backtracking.

Example:
Consider the grammar:
S -> cAd | bd

A -> ab | a

 and the string “cad”, parsed using Recursive-Descent Parser.

Step 1: Following the first rule, S->cAd to parse S

[image: image1.png]N

Step 2:The next non=term in line A is parsed using first rule, A -> ab , but turns out INCORRECT, parser backtracks

[image: image2.png]c /:\d
a/ \h

Step 3:Next rule to parse A is taken A->a, turns out CORRECT. String parsed completely, parser stops.

[image: image3.png]

A left-recursive grammar can cause a recursive-descent parser, even the one with backtracking to go into an infinite loop. An attempt o expand A, we may find ourselves expanding A, without having consumed any input.

__________________________--

Predictive parser

It is a top-down parser that needs no backtracking.

At each step, the choice of rule to be expanded is made upon the made upon the next terminal symbol.

Suppose

A -> A1 | A2 | ….| An

If the non-terminal to be expanded next is ‘A’ , then the choice of rule is made on the basis of the current input symbol ‘a’ only.

Procedure for making an Predictive Parser:

1. Make a transition diagram (like dfa/nfa) for every rule of the grammar.

2. Optimize the dfa by reducing the number of states, yielding the final transition diagram.

3. To parse a string, simulate the string on the transition diagram.

4. If after consuming the input the transition diagram reaches an accept state, it is parsed.

Each of these steps are expanded below:

Consider the following grammar:
· E -> E + T | T

· T - > T * F | F

· F -> (E) | id

After removing left-recursion , left-factoring

The rules are as follows :

· E->T T’

· T’ -> +T T’ | e

· T -> F T’’

· T’’ -> *F T’’ | e

· F->(E) |id

Step 1: make dfa-like transition diagrams for each rule:

· E->T T’

[image: image4.png]START

· T’ -> +T T’ | e
 [image: image5.png]

· T -> F T’’
[image: image6.png]T

· T’’ -> *F T’’ | e

[image: image7.png]

· F -> (E) |id

[image: image8.png]

Step 2 : Optimization

The purpose of optimization is to reduce the number of states

Let’s optimize the states. Consider the dfa for T’ -> +T T’ | e shown below :

[image: image9.png]

It can be optimized to

[image: image10.png]

Which can be optimized further by combining with dfa for E->T T’ shown below

 [image: image11.png]START

It yields

[image: image12.png]

We can even further optimize it to produce

[image: image13.png]

Similarly, we optimize other structures to produce the following dfa’s:

[image: image14.png]START
FINAL

[image: image15.png]

[image: image16.png]

After optimization is over we start simulation over these “dfa’s”.

Step 3: Simulation on the input string:

Following steps list out the simulation procedure briefly.

· Start from the start state

· If a terminal comes consume it, move to next state

· If a non – terminal comes go to the state of the “dfa” of the non-term and return on reaching the final state

· Return to the original “dfa” and continue parsing

· If on completion(reading input string completely), you reach a final state, string is successfully parsed.

Disadvantages of Predictive Parser:

· It is inherently a recursive parser, so it consumes a lot of memory as the stack grows.

· Doing optimization may not be as simple as the complexity of grammar grows

· To remove this recursion, we use LL-parser, which uses a table for lookup.

