Rajat Sethi
Page 1
11/20/2006

TARGET CODE GENERATION
 NEXT USAGE:

In this part we collect next-use information about names in a basic block.

If the name in a register is no longer needed, then the register can be assigned to some other name. Next usage technique is also helpful for dead code optimization where instructions with no next usage are dead and can be eliminated.
Next-usage is defined as follows:-
Consider a 3-address statement for consideration.

Suppose three-address statement i assigns a value to x.

IF statement j has x as an intervening assignments to x,

Then we say statement j uses the value of x computed at i.

Note that we consider only the variables in the same block.

For example take the statement of i and j from same block of a code.

i : x := y op z //no next usage of x in these lines..

.

.

j : y:= x op z // first usage of x after i th statement

We wish to determine the usage of each of the three-address statement x := y op x.
ALGORITHM:

Our algorithm follows a backward pass to the beginning after reaching the end.

After reaching the end we scan backwards to the beginning recording for each name of x whether x has a next use in the block and if not, whether it is live on exit from that block.

If no live variable analysis has been done, we assume that all temporary variables are live on exit.

Here is the backward scan algorithm for implementation.
 If we find the statement of previous occurrence during backtrack.

1. Attach to statement i the information currently found in the symbol table regarding next usage and liveness of all the variables in that statement.

2. In the symbol table set x to “not live” and “no next use”.

3. In the symbol table, set all other variables to “live” and the next uses of them to i.

We can do some sort of optimization too.

We can pack two temporaries into the same location if they are not live simultaneously

We can allocate storage locations for temporaries by examining each in turn and assigning a temporary to the first location in the field for temporaries that does not contain a live temporary.

If a temporary cannot be assigned to any previously created then we add a new location to the data area and allocate it to that temporary.

Example:

T1 := a * a

T2 := a * b

T2 := 2 * T2

T1 := T1 + T2

T2 := b * b

T1 := T1 + T2

Here the usage of registers is minimized.
CODE GENRATION:

Consider an example:

d= (a-b) + (a-c) + (a-c)

t := a-b;

u := a-c;

v := t+u;

d := u+v;

The above three address code is generated using memory, registers or stacks.

Generally, number of registers << number of variables.

Also, the usage of registers generally provides faster speed. Hence an effective usage of the registers should be done. Greedy approach is applied for local optimization.
Register Descriptor: It keeps track of what is in each register. It is consulted whenever a new register is needed. E.g.: R0 contains t, y, z.

Address Descriptor: It keeps tract of the location(s) where the current value of the name can be found at the runtime. The location might be register, stack or memory location. E.g.: t is stored in R0, R3 etc.

Code Generation Algorithm:

X = Y op Z

· STEP 1: Find space L, to store value of X using function getreg();
· STEP 2: For Y, check whether it is stored in L,
If yes, perform Op Z,L
Otherwise perform: MOV Y,L; Op Z,L;

· STEP 3: Generate: Op Z,L

Update address descriptor of X. If X is in any other register, remove it.

· STEP 4: If the current values of Y and Z has no next use, free the registers.
REGISTER ALLOCATION
The getreg() function :
The function getreg returns the location L to hold the value of x for the assignment

 x:=y op z .

The algorithm for getreg:

1) If the name y is in a register , that holds the value of no other names (in other words no other names point to the same register as y does), and y is not live and has no next use after the execution of y = x op z, then

a. return L.
b. Update the address descriptor of y , so that y is no longer in L.

2) Failing (1), return an empty register for L if there is one.

3) Failing (2),
if x has a next use in the block, or if op requires a register then

a.
find an occupied register R.
b.
MOV(R,M) if value of R is not in proper M. If R holds value of many variables, generate a MOV for each of the variables.

4) Failing (3), select the memory location of x as L.

Example:

d := (a-b) + (a-c) + (a-c)
	Statements
	Code generated
	Register descriptor
	Address descriptor

	t = a-b
	MOV a, R0
SUB b,R0
	R0 contains t
	t in R0

	u= a-c
	MOV a, R1

SUB c,R1
	R0 contains t
R1 contains u
	t in R0
u in R1

	v= t+u
	ADD R1,R0
	R0 contains v

R1 contains u
	u in R1
v in R0

	d= v+u
	ADD R1,R0
MOV R0,d
	R0 contains d
	d in R0
d in R0 and memory

Note that cost of this code can be reduced from 12 to 11 by generating MOV R0,R1 immediately after the instruction MOV a,R1.

The guiding force behind a good program is the strategy of efficient allocation of registers.
A simple design is to keep fixed number of registers for each purpose like:

1) Base address

2) Stack

3) Arithmetic Operations

The simple design compensates for the inefficient utilization by this strategy.

 Example of usage of registers across blocks:

[image: image2.emf]

a , c,d,e ,f

[image: image3.emf]

c,d,e ,f

 d,f,b,c

[image: image4.emf]

c,d,e ,f

[image: image1]
a = b+c ; e = a+f ; d = d-b;

f = a –d;

b=d+f ; e= a-c;

b = d+c;

�

�

c,d,e,f,b

c,d,e,f,b

d,e,f,b

�

a,c,d,e

a,c,d,f

- 1 -

