Date : 9/11/06
By: NEERAJ KUMAR (04CS3014)
Three Address Code Generation – Backpatching

The problem in generating three address codes in a single pass is that we may not know the labels that control must go to at the time jump statements are generated. So to get around this problem a series of branching statements with the targets of the jumps temporarily left unspecified is generated. BackPatching is putting the address instead of labels when the proper label is determined.

Backpatching Algorithms perform three types of operations

1) makelist(i) – creates a new list containing only i, an index into the array of quadruples and returns pointer to the list it has made.

2) merge(i,j) – concatenates the lists pointed to by i and j ,and returns a pointer to the concatenated list.

3) backpatch(p,i) – inserts i as the target label for each of the statements on the list pointed to by p.

The Translation scheme is as follows :-

1) E ---> E1 or M E2

backpatch(E1.falselist, M.quad)

E.truelist = merge(E1.truelist, E2.truelist)

E.falselist = E2.falselist

2) E ---> E1 and M E2

backpatch(E1.truelist, M.quad)

E.truelist = E2.truelist

E.falselist = merge(E1.falselist, E2.falselist)

3) E ----> not E1

 E.truelist = E1.falselist

 E.falselist = E1.truelist

4) E -----> (E1)

 E.truelist = E1.truelist

 E.falselist = E1.falselist

5) E -----> id1 relop id2

 E.truelist = makelist(nextquad)

 E.falselist = makelist(nextquad +1)

 emit(if id1.place relop id2.place goto __)

 emit(goto ___)

6) E -----> true

 E.truelist = makelist(nextquad)

 emit(goto ___)

7) E -----> false

E.falselist = makelist(nextquad)

emit(goto ___)

8) M -----> epsilon

M.Quad = nextquad

Most programming languages have a common set of statements that define the control flow of a program written in that language.These statements are :

1.Assignment : A single statement assigning some expression to a variable. After executing this statement, the control flows to the immmediate next statement in the sequence.

2.if<condition>then<then-part>else<else-part> : Control flows to either the then-part or the else-part depending on whether the condition is true or false.

3.while<condition>do <loop> : Control remains within the loop until the condition becomes false.

4.<block of statements> : a group of statements put within a begin ... end block marker.

The grammar for these statements is given by :

S
->
if B then S

|
if B then S else S

|
while B do S

|
begin L end

|
A /*assignment*/

L
->
L S

|
S

To aid the generation of the code, two new marker nonterminals M and N are introduced.

The modified grammar becomes :

S
->
if B then M S

|
if B then M S N else M S

|
while M B do M S

|
begin L end

|
A /*assignment*/

L
->
L M S

|
S

M
->
'epsilon'

N
->
'epsilon'

B is a Boolean expression.

Attributes are defined as follows:

S.nextlist : List of quadruples with jumps to the quadruple succeeding S

L.nextlist : The same, where L is a group of statements.

The nonterminal N iss ued as it permits the generation of a jump after the 'then' in if-then-else. The atribute N.nextlist holds the quadruple number for this statement.

Actions :

S
->
if B then M S1

{

backpatch (B.truelist,M.quad)

S.nextlist = mergelist(B.falselist,S1.nextlist)

}

S
->
if B then M1S1N else M2S2

{

backpatch (B.truelist,M1.quad)

backpatch (B.falselist,M2.quad)

S.nextlist = mergelist(S1 .nextlist,mergelist(N.nextlist,S2.nextlist))

}

S
->
while M1B do M2S1

{

backpatch(S1.nextlist,M1.quad)

backpatch(B.truelist,M2.quad)

S.nextlist = B.falselist

emit('goto' M1.quad)

}

S
->
begin L end

{

S.nextlist = L.nextlist

}

S
->
A

{

S.nextlist = <nil>

}

L
->
L1 M S

{

backpatch(L1.nextlist,M.quad)

L.nextlist = S.nextlist

}

L
->
S

{

L.nextlist = S.nextlist

}

code translation:

begin

while a > b do

begin

x = y + z

a = a - b

end

x = y - z

 end

becomes

1. if a>b goto 3

2. goto 8

3. t1 = y + z

4. x = t1

5. t2 = a - b

6. a = t2

7. goto 1

8. t3 = y - z

9. x = t3

