Three Address Code Generation
Backpatching-I

Prepared By:

Siddharth Tiwary

 04CS3010

· For the examples of the previous lectures for implementing syntax-directed definitions, the easiest way is to use two passes. First syntax tree is constructed and is then traversed in depth-first order to compute the translations given in the definition.

· The main problem in generating three address codes in a single pass for Boolean expressions and flow of control statements is that we may not know the labels that control must go to at the time jump statements are generated.

· This problem is solved by generating a series of branch statements with the targets of the jumps temporarily left unspecified.

· Each such statement will be put on a list of goto statements whose labels will be filled in when the proper label can be determined.

· This subsequent filling of addresses for the determined labels is called BACKPATCHING.

· For implementing Backpatching, we generate quadruples into a quadruple array and Labels are indices to this array.

· To manipulate list if labels, we use three functions: makelist(i),merge(p1,p2) and backpatch(p,i).

· makelist(i) : creates a new list containing only i, an index into the array of quadruples and returns pointer to the list it has made.

· merge(i,j) – concatenates the lists pointed to by i and j, and returns a pointer to the concatenated list.

· backpatch(p,i) – inserts i as the target label for each of the statements on the list pointed to by p.

· Let’s now try to construct the translation scheme for Boolean expression.

· Lets the grammar be:

E → E1 or ME2

E → E1 and ME2

E → not E1

E → (E1)

E → id1 relop id2

E → false

E → true

M → ε

· What we have done is inserting a marker non-terminal M into the grammar to cause a semantic action to pick up, at appropriate times the index of the next quadruple to be generated.

· This is done by the semantic action:

 {M.Quad = nextquad } for the rule M → ε
· Two synthesized attributes truelist and falselist of non-terminal E are used to generate jumping code for Boolean expressions.

· E.truelist : Contains the list of all the jump statements left incomplete to be filled by the label for the start of the code for E=true.

· E.falselist: Contains the list of all the jump statements left incomplete to be filled by the label for the start of the code for E=false.

· The variable nextquad holds the index of the next quadruple to follow.

· This value will be backpatched onto E1.truelist in case of E → E1 and ME2 where it contains the address of the first statement of E2.code.

· This value will be backpatched onto E1.falselist in case of E → E1 or ME2 where it contains the address of the first statement of E2.code.

· We use the following semantic actions for the above grammar :
· 1) E → E1 or M E2

backpatch(E1.falselist, M.quad)

E.truelist = merge(E1.truelist, E2.truelist)

E.falselist = E2.falselist

 2) E → E1 and M E2

backpatch(E1.truelist, M.quad)

E.truelist = E2.truelist

E.falselist = merge(E1.falselist, E2.falselist)

 3) E → not E1

E.truelist = E1.falselist

E.falselist = E1.truelist

 4) E → (E1)

 E.truelist = E1.truelist

 E.falselist = E1.falselist

 5) E → id1 relop id2

 E.truelist = makelist(nextquad)

 E.falselist = makelist(nextquad +1)

 emit(if id1.place relop id2.place goto __)

 emit(goto ___)

 6) E → true

E.truelist = makelist(nextquad)

emit(goto ___)

 7) E → false

E.falselist = makelist(nextquad)

emit(goto ___)

8) M → ε

M.Quad = nextquad

