Three Address Code Generation of Control Statements continued..
Boolean Expressions:

Boolean expressions are composed of the Boolean operators (and , or, and not) applied to the elements that are Boolean variables or relational expressions.

E E or E | E and E | not E | id1 relop id2 | true | false | (E)

Methods of implementing Boolean expressions:

There are two principal methods of representing the value of a Boolean expression.

The first method is to encode true and false numerically and to evaluate a Boolean expression analogously to an arithmetic expression. The second principle method is by flow of control , that is , representing the value of a Boolean expression by a position reached in a program. Here we have adopted the first method.
Semantic Actions for producing Three Address Codes for Boolean Expressions:
E E1 or E2
 E.place := newtemp();

 emit (E.place ‘:=’ E1.place ‘or’ E2.place);

E E1 and E2
 E.place := newtemp();

 emit (E.place ‘:=’ E1.place ‘and’ E2.place);

E not E

 E.place := newtemp();

 emit (E.place ‘:=’ ‘not’ E.place);

E (E1)

 E.place := E1.place;

E id1 relop id2
 E.place := newtemp;

 emit (‘if’ id1.place relop.op id2.place ‘goto’ nextstat+3);

 emit (E.place ‘:=’ ‘0’);

 emit (‘goto’ nextstat+2);

 emit (E.place ‘:=’ ‘1’);

E true
 E.place := newtemp;

 emit (E.place ‘:=’ ‘1’);

E false
 E.place = newtemp;

 emit (E.place ‘:=’ ‘0’);

Note:
1. E.place stands for the variable name.
2. Here we assume that emit places three Address statements into an output file in the right format ,that nextstat gives the index of the three address statement in the output sequence , and that emit increments nextstat after producing each three address statement.
3. newtemp is the function creating a new temporary variable for 3 address code .
Short-Circuit Code
We can translate a Boolean expression into three address code without generating code for any of the Boolean operators and without having the code necessarily evaluate the entire expression. This is called Short-Ciruit or Jumping code.
Parse Tree of a<b or c<d and e<f:

[image: image1]
Translation of a<b or c<d and e<f(Short Circuit code)
100: if a<b goto 103

101: t1 := 0

102: goto 104

103: t1 := 1

104: ifc<d goto 107

105: t2 := 0

106: goto 108

107: t2 := 1

108: if e<f goto 111

109: t3 := 0

110: goto 112

111: t3 := 1

112: t4 := t2 and t3
113: t5 := t1 or t4
Functions and Attributes used in the translation of control Statements :-

Flow of control statements may be converted to three address code by use of the foll
owing functions:-

1. newlabel – returns a new symbolic label each time it is called.

2. gen () – “generates” the code (string) passed as a parameter to it.

 The following attributes are associated with the non-terminals for the code generation:-

1. code – contains the generated three address code.

2. true – contains the label to which a jump takes place if the Boolean expression associated (if any) evaluates to “true”.

3. false – contains the label to which a jump takes place if the Boolean expression (if any) associated evaluates to “false”.

4. begin – contains the label / address pointing to the beginning of the code chunk for the statement “generated” (if any) by the non-terminal.
5. next - contains the label / address pointing to the end of the code chunk for the statement “generated” (if any) by the non-terminal

BASIC CONCEPT INVLOVED:-

The basic idea of converting any flow of control statement to a three address code is to simulate the “branching” of the flow of control using the goto statement.

This is done by skipping to different parts of the code (label) to mimic the different flow of control branches.

EXAMPLES:-

Suppose we have the following grammar:-

S (if E then S1

S (if E then S1 else S2

S (while E do S1

The simulation of the flow of control branching for each statement is depicted pictorially as follows:-

[image: image2]

[image: image3]
SEMANTIC RULES:-

· S (if E then S1

E.true := newlabel ;

E.false := S.next ;

S1.next := S.next ;

S.code := E.code || gen(E.true ‘:’) || S1.code

· S (if E then S1 else S2

E.true := newlabel ;

E.false := newlabel ;

S1.next := S.next ;

S2.next := S.next ;

S.code := E.code || gen(E.true ‘:’) || S1.code || gen(‘goto’ S.next) || gen(E.false ‘:’) || S2.code

 S (while E do S1

S.begin := newlabel ;

E.true := newlabel ;

E.false := S.next ;

S1.next := S.begin ;

S.code := gen(S.begin ‘:’) || E.code || gen(E.true ‘:’) || S1.code || gen(‘goto’ S.begin)

 …

E.code

S1.code

 …

E.true:

E.false:

to E.true

to E.false

S1.code

E.code

S2.code

E.true:

E.false:

S.next:

goto S.next

to E.true

to E.false

if - then

if – then - else

 …

S1.code

E.code

S.begin:

E.true:

E.false:

goto S.begin

to E.true

to E.false

while - do

id

(f)

relop

(<)

id

(e)

id

(d)

relop

(<)

id

(c)

E

and

E

id

(b)

relop

(<)

id

 (a)

E

or

E

E

