	COMPILER CONSTRUCTION--CS 43001
LECTURE NOTES : 24th October, 2006

Prepared by : Arindam Khan (04CS3001)

 Topic : Three Address Code Generations for Boolean Functions :

Boolean expressions are composed of the Boolean operators (and, or, and not) applied to the elements that are Boolean variables or relational expressions.
 In programming languages Boolean expressions have two primary purposes. They are to compute logical values as well as to be used as conditional expressions in statements that alter the flow of control, such as if-then, if-then-else, while-do statements.

 On the other hand, relational expressions are of the form : A relop B where A & B are arithmetic expressions. Relop can be of the following types : < , > , <= , >= , == , != etc. .
· Now let us take some example cases where we are going to write ta-code for conditional statements :
· 1. if (A<B and C<D)
 So there are 4 variables and we are to generate 3-address Code…
 Now, ta-code for Jump can be of two types :
 a) if (X relop Y) goto L; ---- Conditional Jump
 b) goto L; ---- Unconditional Jump
 Using the above mentioned rules, we get:

 If (A < B) goto L1

 Goto L3

 L1: If (C < D) goto L2

 Goto L3

 L2: Code for the correct condition

 L3: Code for incorrect condition

Similarly, for another example case:

· 2.if (A<B or B<D)
 we get :

 If (A < B) goto L2

 Goto L1

 L1: If (C < D) goto L2

 Goto L3

 L2: Code for the correct condition

 L3: Code for incorrect condition
Methods of translating Boolean Functions:
There are two principal methods.

 a)Encode true and False numerically and evaluate a Boolean expression analogously to an arithmetic expression. Often 1 and 0 are used to denote true and false respectively, though other encodings are also possible.

 b)Implement Boolean Expression by a flow of control.
 However let us take up some more examples.

More Examples:
· a or b and not c

 the ta-code for the above expression is the following:
 t1 = not c

 t2 = b and t1
 t3 = a or t2
· a<b
Following the previous method we can write the ta-code for t=a<b as :
 if a<b goto L1;
 goto L2;
 L1: t = 1;
 goto L3;
 L2: t =0;
 L3:
 Also we can write ta-code for t=a<b by replacing labels by address :

 if a<b goto nextstat+3;
 t = 0 ;

 goto nextstat+2;
 t = 1 ;
 where nextstat+p means p lines below the nest statement (where p is an integer)
· Now let us take up some more complex Grammar :

E (E or E | E and E | not E | id1 relop id2 | true | false | (E)
Translation scheme for producing Three Address Codes for Boolean Expressions:

E E1 or E2
 {

 E.place := newtemp();

 emit (E.place ‘: =’ E1.place ‘or’ E2.place);
 }

E E1 and E2
 {

 E.place := newtemp();

 emit (E.place ‘: =’ E1.place ‘and’ E2.place);
 }

E not E

 {

 E.place := newtemp();
 emit (E.place ‘: =’ ‘not’ E.place);
 }
E (E1)
 {

 E.place := E1.place;
 }

E id1 relop id2
 {

 E.place ‘: =’ newtemp();

 emit (‘if’ id1.place relop.op id2.place , ‘goto’ nextstat+3);
 emit (E.place ‘: =’ ‘0’);
 emit (‘goto’ nextstat+2);
 emit (E.place ‘: =’ ‘1’);
 }

E true
 {

 E.place := newtemp();

 emit (E.place ‘:=’ ‘1’);
 }
E false
 {

 E.place = newtemp();

 emit (E.place ‘:=’ ‘0’);
 }

Short-Circuit Code :
We can translate a Boolean expression into three address code without generating code for any of the Boolean operators and without having the code necessarily evaluate the entire expression. This is called Short-Circuit or Jumping code.

Translation of a<b or c<d and e<f: (emit)
1. 100: if a<b goto 103 E.place=t1;
 101: t1 := 0

 102: goto 104

 103: t1 := 1

2. 104: if c<d goto 107 E.place=t2;
 105: t2 := 0

 106: goto 108
 107: t2 := 1

3. 108: if e<f goto 111 E.place=t3;
 109: t3 := 0
 110: goto 112

 111: t3 := 1

4. 112: t4 := t2 and t3 E.place=t4;
5. 113: t5 := t1 or t4 E.place=t5;[image: image1.png]

