Three Address Code Generation
What is a Three Address code?
Three address code is a sequence of statements of the general form x = y op z ,where x , y , z are names, constants and op stands for any operator such as fixed or floating point arithmetic operator or a logical operator on boolean valued data. Here three address refers to three addresses ie addresses of x, y and z.
Say for example we have a statement like a = b + c * d then we can make a three address code for it as follows:

t1 = c * d;

a = b+ t1;

Types of Three address statements:

There are different types of three address statements. Some of them are as follows :-

• Assignment statements. They are of the form x := y op z where op is a binary arithmetic or logical operation

• Assignment Instructions. They are of the form x := op y where op is an unary operation like unary plus, unary minus shift etc....

• Copy statements. They are of the form x := y where the value of y is assigned to x

• Unconditional Jump goto L. The three address statement with label L is the next to be executed.

• Conditional Jumps such as if x relop y goto L. This instruction applies a relational operator (<,>,<=,>=) to x and y and executes the statement with label L if the conditional statement is satisfied. Else the statement following if x relop y goto L is executed

• param x and call p,n for procedure calls and return y where y representing a returned value (optional).Three Address statements for it are as follows.
 param x1

 param x2

 param x3

 .

 .

 param xn

 call p,n

generated as a part of the three address code for call of the procedure p(x1,x2,x3,....xn)

where n are the number of variables being sent to the procedure

Structure for Three Address Code:
It is a quadruple of an operator, arg1 , arg2 and a result or it is a triple of an operator , arg1 and arg2. In triple form arg2 is generally a pointer to the triple structure.

Three address code generation:

Suppose we have the grammar

 S ->id := E

 E -> E+E
 E -> E*E

 E -> - E

 E -> (E)

 E -> id

	Grammar Rule
	Action Statements

	S->id:=E
	S.code :=E.code || gen(id.place”:=”E.place)

	E->E+E
	E.place=newtemp()

E.code:=E1.code || E2.code || gen(E.place “:=” E1.place '+' E2.place)

	E->E*E
	E.place=newtemp()

E.code:=E1.code || E2.code || gen(E.place “:=” E1.place '*' E2.place)

	E-> -E
	E.place=newtemp()

E.code := E1.code || gen(E.place ':=” '-' E1.place)

	E->(E)
	E.place=E1.place

E.code=E1.code

	E->id
	E.code=' '

E.place=id.place

E1 refers to the first E that comes in the production .
E2 refers to the second E that comes in the production.
Here E.code stands for the three address code generated by E and E.place stands for the variable name

Swapandeep Singh
04CS1033
