

Abhijeet Mohapatra

Roll no : 04CS1019
SLR PARSING TECHNIQUES

INTRODUCTION

A Simple LR parser or SLR parser is an LR parser for which the parsing tables are generated as for an LR(0) parser except that it only performs a reduction with a grammar rule A → w if the next symbol on the input stream is in the follow set of A(. Such a parser can prevent certain shift-reduce and reduce-reduce conflict that occur in LR(0) parsers and it can therefore deal with more grammars. However, it still cannot parse all grammars that can be parsed by an LR(1) parser. A grammar that can be parsed by an SLR parser is called a SLR grammar.

CONSTRUCTION OF SLR – PARSING TABLES
In the following section, we show how to construct from a given input grammar, a SLR Parsing Table.

INPUT: Grammar G with production rules.

CENTRAL IDEA

To construct from the input grammar, a DFA to recognize viable prefixes. This is done by grouping items into sets which can be visualized as subset construction from the states of a NFA recognizing the viable prefixes.

DEFINITIONS

· Item: An LR (0) item or simply, an item of a grammar G is a production of G with a dot ‘.’ at some position of the right side. For example, the production A (XYZ yields four items,

· A (.XYZ

· A (X.YZ

· A (XY.Z

· A (XYZ.

 A production rule of the form A ((yields only one item A (. . Intuitively, an item shows how much of a production we have seen till the current point in the parsing procedure.
· Augmented Grammar G’: This equals G ({S’ (S} where S is the start state of G. The start state of G’ = S’. This is done to signal to the parser when the parsing should stop to announce acceptance of input.
· Closure Operation: If I[] is a set of items for a grammar G,

closure(I) = I ({B (.(| (A ((.B((closure(I)) (((B (() (

grammar G}

· Goto Operation: For a set of items I, and grammar symbol X,

goto(I, X) = { Closure (all items containing A ((X.() such that

A ((.X(is in I} = set of items that are valid for the viable prefix (X,

where I is valid for some viable prefix (.

· Kernel and Non-Kernel items: Kernel items include the set of items that do not have the dot at leftmost end, along with S’(.S

Non-kernel items are the items which have the dot at leftmost end.

CONSTRUCTION STEP 1: SETS OF ITEMS CONSTRUCTION

void items (grammar G){

 set C;

 int i, j, n;

 C = {closure ({[S’ (.S]})};

 do{

 n = 0;

 for (i = 0; i < size(C); i++)

for (j = 0; G.symbol[j] != 0; j++)

 if (size(goto(C[i],X)) > 0 && !iselement(goto(C[i],X),C))

 { C = union(C, goto(C[i],X)); n++;}

 } while (n != 0);

}
Example:

For the Grammar
S’ (S

S (aABe

A (Abc

A (b

B (d
Applying the construction step 1 yields the following set of items,

I0 = {[S’ (.S], [S (.aABe]}

I1 = {S’ (S.}

I2 = {S (a.ABe, A (.Abc, A (.b}

I3 = {S (aA.Be, A (A.bc, B (.d}

I4 = {A (b.}

I5 = {S (aAB.e}

I6 = {A (Ab.c}

I7 = {B (d.}

I8 = {S (aABe.}

I9 = {A (Abc.}

The table for parsing action and goto function for the given grammar is:-

	STATE
	action
	Goto

	
	a
	b
	c
	d
	e
	$
	S
	A
	B

	I0
	s2
	
	
	
	
	
	1
	
	

	I1
	
	
	
	
	
	acc
	
	
	

	I2
	
	s4
	
	
	
	
	
	3
	

	I3
	
	s6
	
	s7
	
	
	
	
	5

	I4
	
	r4
	
	r4
	
	
	
	
	

	I5
	
	
	
	
	s8
	
	
	
	

	I6
	
	
	s9
	
	
	
	
	
	

	I7
	
	
	
	
	r5
	
	
	
	

	I8
	
	
	
	
	
	r2
	
	
	

	I9
	
	r3
	
	r3
	
	
	
	
	

Where

1. rj means reduce by production numbered j,

2. acc means accept

3. si means shift and stack state i.

4. blank means error.

	STATE
	Input
	Action

	0
	abbcbcde$
	Shift

	0a2
	bbcbcde$
	Shift

	0a2b4
	Bcbcde$
	A (b

	0a2A3
	Bcbcde$
	Shift

	0a2A3b6
	cbcde$
	Shift

	0a2A3b6c9
	bcde$
	A (Abc

	02A3
	bcde$
	Shift

	02A3b6
	cde$
	Shift

	0a2A3b6c9
	de$
	A (Abc

	0a2A3
	de$
	Shift

	0a2A3d7
	e$
	B (d

	0a2A3B5
	e$
	Shift

	0a2A3B5e8
	$
	S (aABe

	0S1
	$
	Accepted

 Moves of LR parser on input “abbcbcde”
CONSTRUCTION STEP 2: GOTO graph from the set of items (LR (0)) formed
1. Enumerate all the collection of items: C (I0, I1,…)
2. Put all the transitions in the between the Items in the GOTO graph.

Transition Rules:

 If there is a transition from,

 A->α . Xβ to A-> αX . β
 then, the transition in the GOTO Graph is labeled X

 If there is a transition

 A-> α . Bβ to B-> .γ
 then, the transition is labeled ε, and since we take ε-closure of all items, these productions lie in the same item as that of A->α . Bβ to A-> αB . β.

So, the GOTO Graph of the given grammar is produced follows.

[image: image1.emf]

[image: image2]
 The GOTO Graph for the given grammar.

From the GOTO Graph we now start filling the Parsing table for the SLR (simple LR) parser, which contains State i as the row index and action & goto as the vertical column index.

The Rules for filling the action entries in the table are:

1.If [A-> α .a β] is in Ii and goto (Ii , a) = Ij, then set action [i ,a] to “shift j “.Here a must be a terminal.

2. If [A-> α .] is in Ii, then set action[i , a] to “reduce A -> α “ for all a in FOLLOW (A); here A may not be in S’.

3. If [S’-> S.] is in Ii , then set action [I, $] to accept.

If any conflicting actions are generated by the given rules, then we say the grammar is not in SLR or LR (0) and we fail to produce a parser.

We then fill the goto entries.

The goto transitions for the state i are constructed for all the non-terminals A using the Rule:

If goto(Ii, A) = Ij , then goto [i , A] = j .

 …. Note : goto (Ii, A) is an entry in graph, whereas goto[i, A] is the corresponding entry in parsing table .

Also the initial state of the parser is one constructed from the set of items containing [S’-> .S] So, the Parsing table for the grammar comes out to be. Using this we go ahead with the parsing action.
(

S’-> .S

S->.aABe

 I0

S’ -> S.

 I1

S-> a.Abe

A->.Abc

A->.b

 I2

S->aA.Be

A->A.bc

B->.d

 I3

A -> b.

 I4

S->aAB.e

 I5

S->aABe.

 I8

 B->d.

 I7

A->Abc.

 I9

A->Ab.c

 I6

a

$

b

A

B

e

b

c

d

(In predictive parsing, for a non-terminal A, FOLLOW(A) = {a | (a (TERMINAL_SET) ((derivation (S (* (Aa(for some (, () }

(End of Document ------------Submitted by Abhijeet Mohapatra 04CS1019

