LEFT RECURSION:

A grammar is said to be left –recursive if it has a non-terminal A such that there is a derivation A =>, for some string . Top–down parsing methods cannot handle left recursive grammars, so a transformation that eliminates left-recursion is needed.

Consider the grammar:

(i

 The parser can go into an infinite loop.

Corresponding grammar without left recursion:





No matter how many A-productions there are we can eliminate immediate left recursion

from them by the following technique .First we group the A-productions as :

A -mn

where no i begins with an A. Then we replace the A-productions by

AnT

TmT |

The above process removes all immediate left recursions but does not remove recursions involving derivations of two or more steps.

Consider the grammar:

S a

A  Sb | c..

Here the grammar does not have immediate left recursion .. but has a left recursion because S =Aa = Sba

In such cases we set a “hierarchy” among non-terminals and implement the following algorithm.
1. Arrange the non-terminals n some order A1,A2, …An (setting the hierarchy)

2. for i=1 to n

 {

 for j=1 to i-1

{

Replace each production of the form Ai -> Aj

by the production i

where Ajk are all the current Aj positions

}

 Eliminate the immediate left recursion among the Ai productions

 }

For the above grammar,

S->Aa

A->Aab|c

After removing immediate left recursion :

S->Aa

A->cT

T->abT|

LEFT FACTORING:

Left factoring is a grammar transformation that is useful for producing a grammar suitable for predictive parsing. The basic idea is that when it is not clear which of two alternative productions to use to expand a non-terminal A, we may be able to rewrite the A-productions to defer the decision until we have seen enough of the input to make the right choice.

For example,

A->are two A-productions , and the input begins with a non-empty string derived fromwe do not know whether to expand A to or. However , we may defer the decision by expanding A to B . Then , after eeing the input derived from , we may expand B to  or .The left factored original expression becomes:





