 LL PARSER

 What does LL signify ?

 The first L means that the scanning takes place from Left to right.

 The second L means that the Left derivation is produced first.

 The prime requirements are : -

1) Stack

2) Parsing Table

3) Input buffer

4) Parsing program .

 Input buffer contains the string to be parsed, followed by $,

 a symbol used to indicate end of the input string. The stack indicates a

 sequence of grammar symbols with $ on the bottom,indicating bottom of

 the stack. Initially, the stack contains the start symbol of the grammar

 on the top of $. The parsing table is a 2-D array M[A,a] where A

 is a nonterminal, and a is a terminal or the symbol $.

 How to control the parser?

1. If X=a=$, parser halts, string accepted.

2. If X=a !=$, parser pops X, and advances the input pointer to point to next input symbol.

3. If X is a nonterminal, the program consults entry M[X,a] of the parsing table M. Replace the top of stack(X) with production rule cossesponding to entry in table.If entry = ERROR, call error recovery routine.

 Construction of predictive parsing table :

 To construct parsing table, the following algo must be used :

 Algorithm to construct predictive parsing table :

1. For each production A(a of grammar G , do steps 2 and 3

2. For each terminal 'a' in FIRST(a) , add A(a in M[A,a].

3. If e is in FIRST(a) , add A(a to M{A,b] for each terminal b in FOLLOW(A). If e is in FIRST(a) , and $ is in FOLLOW(A), then add A-->a to M[A,$].
4. Make each undefined entry as “ERROR”, i.e. An error entry.

 /**/

 Example:

 Consider the grammar G:
 E(TE'

 E'(+TE' | ë
 T(FT'

 T'(*FT' | ë
 F((E) | id

 Calculate the FIRST and FOLLOW . The following table is obtained.

	
	Nullable?
	FIRST
	FOLLOW

	 E
	 No
	 Id , (
	 $,)

	 E'
	 Yes
	 +
	 $,)

	 T
	 No
	 Id , (
	 + , $,)

	 T'
	 Yes
	 *
	 + , $,)

	 F
	 No
	 Id , (
	 + , * , $,)

 Using the algo to obtain the parsing table, we find the following

 table.

	
	id
	+
	*
	(
)
	$

	 E
	 E(TE '
	
	
	 E(TE'
	
	

	 E'
	
	 E'(+TE'
	
	
	E'(ë
	 E(ë

	 T
	 T(FT '
	
	
	 T(FT'
	
	

	 T '
	
	 T '(ë
	 T'(*FT'
	
	 T' (e
	 T'(ë

	 F
	 F(id
	
	
	 F((E)
	
	

From this table, any input belonging to this grammar G can be parsed.

 Let id+id*id be the input.

 Then parsing proceeds as given in next page.

	stack
	Input buffer

	 $E
	 id+id*id$

	 $E'T'
	 Id+id*id$

	 $E'T'F
	 Id+id*id$

	 $E'T'id
	 Id+id*id$

	 $E'T'
	 +id*id$

	 $E'
	 +id*id$

	 $E'T+
	 +id*id$

	 $E'T
	 id*id$

	 $E'T'F
	 id*id$

	 $E'T'id
	 id*id$

	 $E'T'
	 *id$

	 $E'T'F*
	 *id$

	 $E'T'F
	 id$

	 $E'T'id
	 id$

	 $E'T'
	 $

	 $E'
	 $

	 $
	

	 The input is accepted
	

	
	

Thus, we can easily construct an LL parser with 1 lookahead.

Since one look ahead is involved, we also call it an LL(1) parser.

 /**/

 Requirement to form an LL (1) parser:
1) No ambiguity in grammar
2) No left factoring in grammar

3) If An(a | b is a production in the grammar, then FIRST (a) and FIRST (b), where a, b is any string, should be mutually exclusive, i.e., they should have nothing in common.

4) If A(a | b, and FIRST (A) contains epsilon, then FOLLOW (A) and FIRST (b) should not coincide. Here a, b are any string of grammar symbols.

5) If A(a | b| c , then at most one of a, b, c should be Nullable.

 In this way, if the precautions are taken, one could make a grammar for

 which an LL parser could be developed.

 However not all grammars could be parsed by LL parsers.

 Next topic is LR parsers, which are more powerful than LL.

Here is another example

 /***/

Example: S (iEtSS’ | a

S’ (eS | €

E (b

	Non-Term
	Sym a
	Sym b
	Sym e
	Sym i
	Sym t
	Sym $

	 S
	S--> a
	
	
	S-->iEtSS’
	
	

	 S’
	
	
	S -->€

S’-->eS
	
	
	S’-->€

	 E
	
	E-->b
	
	
	
	

The grammar is ambiguous and it is evident by the fact that we have two entries corresponding to M[S’,e] containing S -->€ and S’ -->eS.This ambiguity can be resolved if we choose S’-->eS i.e associating the the else’s with the closest previous “then”.

LL(1) grammars have distinct properties. No ambiguous grammar or left recursive grammar can be LL(1).A grammar is LL(1) if and only if whenever a production A--> C | D the following conditions hold:

1)For no terminal a both C and D derive strings beginning with a. Thus First(C) != First(D)

2)At most one of C or D can derive €

3) If C* € then D doesn’t derive any string beginning with terminal Follow(A).

 /***/

Prepared by
Mukesh Kumar B

04cs1013,
CSE, IIT Kharagpur.

