

LEX

Date:11.08.2005

-A tool widely used to specify lexical analyzers for a variety of languages

· We refer to the tool as Lex compiler , and to its input specification as the Lex language.

Lex source

Program ----- ------ lex.yy.c

lex.l

lex.yy.c ------ ----- a.out

Input stream ---- ---- sequence of tokens

Input.c

 Creating a lexical analyzer with Lex

Lex specifications:

A Lex program (the lex.l file) consists of three parts:

1. Declarations part %%

2. Transition rules part %%

3. Auxillary procedures part

 Declarations

· The declarations section includes declarations of variables,manifest constants(A manifest constant is an identifier that is declared to represent a constant e.g. # define PIE 3.14), the files to be included and definitions of regular expressions .

 Transition rules

· The translation rules of a Lex program are statements of the form :

 p1

{action 1}

 p2

{action 2}

 p3

{action 3}

 … …

…

 …

where each p is a regular expression and each action is a

program fragment describing what action the lexical analyzer

should take when a pattern p matches a lexeme.

In Lex the actions are written in C.

 Auxillary procedures

· The third section holds whatever auxiliary procedures are needed by the actions.Alternatively these procedures can be compiled separately and loaded with the lexical analyzer.The auxillary peocedures are written in C language.

· Note: You can refer to a sample lex program given in page no. 109 of chapter 3 of the book: Compilers: Principles, Techniques, and Tools by Aho, Sethi & Ullman for more clarity.

How does this Lexical analyzer work?

The lexical analyzer created by Lex behaves in concert with a parser in the following manner. When activated by the parser, the lexical analyzer begins reading its remaining input , one character at a time, until it has found the longest prefix of the input that is matched by one of the regular expressions p. Then it executes the corresponding action. Typically the action will return control to the parser. However, if it does not, then the lexical analyzer proeeds to find more lexemes, until an action causes control to return to the parser. The repeated search for lexemes until an explicit return allows the lexical analyzer to process white space and comments conveniently.

The lexical analyzer returns a single quantity, the token, to the parser. To pass an attribute value with information about the lexeme, we can set the global variable yylval.

e.g. Suppose the lexical analyzer returns a single token for all the relational operators, in which case the parser won’t be able to distinguish between ” <=”,”>=”,”<”,”>”,”==” etc. We can set yylval appropriately to specify the nature of the operator.

Note: To know the exact syntax and the various symbols that you can use to write the regular expressions visit the manual page of LEX in LINUX :

$man lex

The two variables yytext and yyleng

Lex makes the lexeme available to the routines appearing in the third section through two variables yytext and yyleng

1. yytext is a variable that is a pointer to the first character of the lexeme.

2. yyleng is an integer telling how long the lexeme is.

A lexeme may match more than one patterns.How is this problem resolved?

Take for example the lexeme if. It matches the patterns for both keyword if and identifier. If the pattern for keyword if precedes the pattern for identifier in the declaration list of the lex program the conflict is resolved in favour of the keyword. In general this ambiguity-resolving strategy makes it easy to reserve keywords by listing them ahead of the pattern for identifiers.

The Lex’s strategy of selecting the longest prefix matched by a pattern makes it easy to resolve other conflicts like the one between “<” and “<=”.

· In the lex program, a main() function is generally included as:

 main(){

 yyin=fopen(filename,”r”);

 while(yylex());

 }

· Here filename corresponds to input file and the yylex routine is called which returns the tokens. yyin is FILE pointer declared by Lex part.

For more information on Lex and YACC visit this link:

 http://epaperpress.com/lexandyacc/
 Prepared by

 Subhra Mazumdar

 (04CS1008)

 Lex compiler

�
�

 C

compiler�
�

 a.out�
�

