
Intermediate Code Generation

 Intermediate Code is generated using the Parse rule Producing
a language from the input language.

 Why do we need intermediate code?
-intermediate code has the following property – simple enough to be
Translated to assembly code . complex enough to capture the
complication of high level language.

Utility of Intermediate Code Generation:

1. Suppose We have n-source languages and m-Target languages.
Without Intermediate code we will change each source language
into target language directly.So,for each source-target pair we will
need a compiler. Hence we will require (n*m) Compilers, one for
each pair.
 If we Use Intermediate code We will require n-Compilers to
convert each source language into Intermediate code and m-
Compilers to convert Intermediate code into m-target languages.
Thus We require only (n+m) Compilers.

2. Retargetting is facilitated; a compiler for a different machine can be
created by attaching a Back-end(which generate Target Code) for the
new machine to an existing Front-end (which generate Intermediate
Code).
3. A machine Independent Code-Optimizer can be applied to the
Intermediate code.
4. Intermediate code is simple enough to be easily converted to any
target code.
5. Complex enough to represent all the complex structure of high
level language.

Types of Intermediate Code:
 -High Level Representation.
 -Low level Representation.

Code Optimization:
 -See the total intermediate instruction and optimize.

 -Find Redundancy in Code.
 -find common subexpression
 -check for dependency
 -detect dead codes

TWO BASIC TYPES OF OPTIMIZATION:
1>machine dependent i.e utilizing hardware specification for max
efficiency.but range of compatibility is small.
2>machine independent,

 Syntax Tree is optimization of high level language.
 Suppose we have following code:

 if(x<0) then x=3*(y+1);
 else y=y+1;

ifstat

if assign exp then

id id relop id = exp

exp
*

exp

(exp)

elsestat

exp + exp

id id

;

 FIG parse tree for ifstat(DAG).

elsestat

else exp

id = exp

exp + exp

id id

 We Can see A DAG gives the same information but in a more
compact manner because common sub-expression are identified.
PostFix Notation can be used to represent tree in linearized
manner.In PostFix Notation edges of tree do not appear explicitly.

Three Address Code:
Another way to represent tree in linearized form is Three-address-
code Notation.
In Three Address Code method internal nodes are given names.
It is a low level Intermediate code representation.

 Example:
 x=y op z
 where x,y and z are names ,constants or Compiler generated
 temporaries.
 where op stands for any operator.

