 BOTTOM-UP PARSING

Bottom-up parsing attempts to construct a parse tree for an input string beginning at the leaves (the bottom) and working up towards the root (the top). The process can be thought of as “reducing” a string w to the start symbol of a grammar. At each reduction step a particular substring matching the right side of a production is replaced by the symbol on the left of that production, and if the substring is chosen correctly at each step, a rightmost derivation is traced out in reverse.
Suppose we have a grammar

S -> aABe

A ->Abc | b

B ->d

And the input string is

abbcde

Then an instance of bottom-up parsing can be given as

abbcde
aAbcde

aAde

aABe
S

Thus this process is like tracing out the right most derivations in reverse.

RIGHT DERIVATION
Expanding the rightmost non-terminal in each step of the derivation.
In context of the above example right derivations can be shown as

S -> aABe -> aAde -> aAbcde -> abbcde

Here in each step we have expanded the rightmost terminal.
HANDLE:

A handle is a substring that matches the right hand side of a production and replacing

RHS by LHS must be step in the reverse rightmost derivation that ultimately leads to

the start symbol. If replacing a string does not ultimately lead to the start symbol it can’t

be a handle.
In the above example Abc is an example of a handle.
S -> aABe -> aAde -> aAbcde -> abbcde

Consider the grammar
E -> E + E | E * E | id

	Right sentential form
	 Handle
	 Production Rule

	id1 + id2 * id3
	 id1
	E -> id

	E + id2 * id3
	 id2
	E -> id

	E + E * id3
	 id3
	E -> id

	E + E * E
	 E * E
	E -> E * E

	E + E
	 E + E
	E -> E +E

	E
	
	

Here it can be noted that string appearing to the right of a handle contains only terminal symbols
Since here the grammar is ambiguous the choices for the handles can be different depending upon right derivations used.

In bottom up parsing using handles the main problems are

1. Identifying the handle

2. Identifying the rule to reduce

This process can be made algorithmic using a stack implementation

Decision 1 (shift the next input symbol onto the top of the stack
Decision 2 (Reduce the symbol at the top of the stack .Here the parser knows that the right end of the handle is at the top the stack. It must then locate the left end of the handle within the stack and replace it with the non-terminal

Thus it is because of this approach that it is also called bottom-up parsing.
The main two problems stated above are termed as shift-reduce and reduce-reduce

conflicts.

Here are the actions of a shift-reduce parsers for the string id1 + id2 * id3 for the grammar defined above

	 STACK
	 INPUT
	 ACTION

	1. $
	id1 + id2 * id3$
	shift

	2. $id3
	+ id2 * id3 $
	Reduce(E -> id)

	3. $E
	+ id2 * id3 $
	Shift

	4. $E +
	id2 * id3 $
	Shift

	5. $E + id2
	* id3 $
	Reduce (E->id)

	6. $E + E
	* id3 $
	Shift

	7. $E + E *
	id3 $
	Shift

	8. $E + E * id3
	$
	Reduce (E->id)

	9. $E + E * E
	$
	Reduce (E->E * E)

	10.$E + E
	$
	Reduce (E->E + E)

	11.$E
	$
	accept

Note in 6., E + E could have been reduced to E instead of shifting (a shift-reduce conflict)

But we chose to shift because it would have produced the start symbol (11) even if the whole input was not consumed

There are CFG’s for which shift-reduce parsing cannot be used. For such grammars the

Shift-reduce or reduce-reduce conflicts cannot be resolved

 OPERATOR PRECEDENCE PARSER
Operator Grammar are defined as the grammars with the following properties :
1. No epsilon in the right side of any production
2. No adjacent non-terminals in the right side of any production
a <. b means a “yields precedence to” b
a = b means a “has the same precedence as” b
a .> b means a “takes precedence over” b
Also a <. b need not imply b .> a
Consider the grammar

E -> E + E | E * E | id

Precedence Table
	
	+
	*
	id
	$

	+
	.>
	<.
	<.
	.>

	*
	.>
	.>
	<.
	.>

	id
	.>
	.>
	.>
	.>

	$
	<.
	<.
	<.
	<.

Given the above table:
Consider the input string id1 + id2 * id3
The string with the precedence relations inserted from the above table is

 $ <. id1 .> + <. id2 .> * <.id3 .> $

The handles can be found as
If <. Push in stack

If .> Pop till a <. is found and reduce

$ <. id1 .> + <.id2 .> * <.id3.>$

$ <. E.+ <.id2 .> * <.id3.>$

$ <. E + <.id2 .> * <.id3.>$

$ <. E + <.id2 .> * <.id3.>$

$ <. E + <.E * <.id3.>$

$ <. E + <. E * E .>$

$ <. E + E. >$

$ <. E .> $

Formally now the following algorithm can be followed for parsing

1. If the front of input has $ and top of stack both have $S, it’s done

 Else

 2.Compare front of input b with .>

 if b!=‘.>’

 then push b

 Scan the next input symbol
 3. If b==‘.>’

 Then pop till <. and store it in a string S

 pop <. also

 reduce the popped string

 If (top of stack) <. (Front of input)

 then push <.S

 If (top of stack) .> (Front of input)

 then push S and goto 3
	
	 Stack
	 Input
	 Action

	1
	 $
	 <.id1.>+<.id2.>*<.id3.>$
	 Shift

	2
	 $<.id1
	 .>+ <.id2.>*<.id3.>$
	 Reduce (E (id)

	3
	 $<.E
	 +<.id2.>*<.id3.>$
	 Shift

	4
	 $<.E+<.id2
	 .>*<.id3.>$
	 Reduce (E (id)

	5
	 $<.E+<.E
	 *<.id3.>$
	 Shift

	6
	 $<.E+<.E*<.id3
	 .>$
	 Reduce (E (id)

	7
	 $<.E+<.E*E
	 .>$
	 Reduce (E (E*E)

	8
	 $<.E+E
	 .>$
	 Reduce (E (E+E)

	9
	 $E
	 $
	 Accept

