91. De, T., Das, A., Kumar, J.:
On the prediction of particle collision behaviour in coarse-grained and resolved systems.
Accepted for publication in Particulate Science and Technology (2023). |
90. Das, A., Paul, J., Heinrich, S., Kumar, J.:
Development and analysis of moments preserving finite volume schemes for multi-variate nonlinear breakage model.
Accepted for Publication in Proceedings of the Royal Society A (2023). |
89. Ghosh, D., Paul, J., Kumar, J.:
On equilibrium solution to singular coagulation equation with source and efflux.
Journal of Computational and Applied Mathematics (2022). |
88. Paul, J., Das, A., Kumar, J.:
Moments preserving finite volume approximations for the non-linear collisional fragmentation model.
Applied Mathematics and Computation (2022). |
87. Sehrawat, P., Sarkar, D., Kumar, J.:
Parameter Identification in Population Balance Models Using Uncertainty and Sensitivity Analysis.
Industrial & Engineering Chemistry Research (2022). |
86. Das, A., De, T., Kaur, G., Dosta, M., Heinrich, M., Kumar, J.:
An efficient multiscale bi-directional population balance modelling–discrete element model coupling framework to model one-dimensional aggregation mechanism.
Proceedings of the Royal Society A 478 (2022), 2261. |
85. De, T., Chakraborty, J., Kumar, J., Tripathi, A., Sen, M., Ketterhagen, W.:
A particle location based multi-level coarse-graining technique for Discrete Element Method (DEM) simulation.
Powder Technology 398 (2022), 117058. |
84. Kumbhakar, M., Mohan, S., Ghoshal, K., Kumar, J., Singh, V.P.:
Semi-analytical solution for non-equilibrium suspended sediment transport in open channels with concentration-dependent settling velocity.
Journal of Hydrologic Engineering 27 (2022). |
83. Roy, N., Dürr R., Bück, A., Kumar, J., Sundar S.:
Numerical methods for particle agglomeration and breakage in lid-driven cavity flows at low Reynolds numbers.
Mathematics and Computers in Simulation 192 (2022), 33-49. |
82. Mohan, S., Kundu, S., Ghoshal, K., Kumar, J.:
Numerical study on two dimensional distribution of streamwise velocity in smooth open channel turbulent flows.
Archives of Mechanics 73 (2021), 175-200. |
81. Das, A., Kumar, J.:
Population balance modeling of volume and time dependent spray fluidized bed aggregation kernel using Monte Carlo simulation results.
Applied Mathematical Modelling 92 (2021), 748-769. |
80. Debnath, S., Ghoshal, K., Kumar, J.:
Unsteady two-dimensional suspended sediment transport in open channel flow subject to deposition and re-entrainment.
Journal of Engineering Mathematics 126:6 (2021). |
79. Das, A., Kumar, J., Dosta M., Heinrich, S.:
On the approximate solution and modelling of the kernel of nonlinear breakage population balance equation.
SIAM Journal on Scientific Computing 42 (2020), B1570-B1598. |
78. Das, A., Dutta S., Sen M., Saxena A., Kumar J., Giri L., Murhammer D.W., Chakraborty J.:
A detailed model and Monte Carlo simulation for predicting DIP genome length distribution in baculovirus infection of insect cells.
Biotechnology and Bioengineering 118 (2020), 238-252. |
77. Das, A., Bhoi, S., Sarkar, D., Kumar, J.:
Sonofragmentation of rectangular plate-like crystals: Bivariate population balance modeling and experimental validation.
Crystal Growth & Design 20 (2020), 5424-5434. |
76. Ghosh, D., Saha, J., Kumar, J.:
Existence and uniqueness of steady-state solution to a singular coagulation-fragmentation equation.
Journal of Computational and Applied Mathematics 380 (2020), 112992. |
75. Kaur, G., Singh, R., Singh, M., Kumar, J., Matsoukas, T.:
Reply to Comment on "Analytical approach for solving population balances: a homotopy perturbation method'' J. Phys. A 52 (2019) 385201.
Physics A: Mathematical and Theoretical 53 (2020), 388002. |
74. Das, A., Bück, A., Kumar, J.:
Selection function in breakage processes: PBM and Monte Carlo modeling.
Advanced Powder Technology 31 (2020), 1457-1469. |
73. Ghosh, D., Kumar, J.:
Uniqueness of solutions to the coagulation-fragmentation equation with singular kernel.
Japan Journal of Industrial and Applied Mathematics 37 (2020), 487-505. |
72. Mohan, S., Kumbhakar, M., Ghoshal, K., Kumar, J.:
Semi-analytical solution for one-dimensional unsteady sediment transport model in open channel with concentration-dependent settling velocity.
Physica Scripta 95 (2020), 055204. |
71. Das, N., Saha, J., Kumar, J.:
An application of semigroup theory to the pure fragmentation equation.
The Journal of Analysis 28 (2020), 95-106. |
70 .Skorych, V., Das, N., Dosta, M., Kumar, J., Heinrich, S.:
Application of transformation matrices to the solution of population
balance equations. Processes 7 (2019), 535. |
69. Kaur, G., Singh, R., Singh, M., Kumar, J., Matsoukas, T.:
Analytical approach for solving population balances: a homotopy perturbation method. Journal of Physics A: Mathematical and Theoretical 52 (2019), 385201. |
68. Mohan, S., Kumbhakar, M., Ghoshal, K., Kumar, J.:
Semi-Analytical Solution for Simultaneous Distribution of Fluid Velocity and Sediment Concentration in Open Channel Flow. Journal of Engineering Mechanics 145 (2019), 04019090. |
67. Bhoi, S., Das, A., Kumar, J., Sarkar, D.:
Sonofragmentation of two-dimensional plate-like crystals: Experiments and Monte Carlo simulations. Chemical Engineering Science 203 (2019), 12-27. |
66. Kaur, G., Singh, M., Matsoukas T., Kumar, J., De Beer, T., Nopens, I.:
Two-Compartment Modeling and Dynamics of Top-Sprayed Fluidized Bed Granulator. Applied Mathematical Modelling 68 (2019), 267-280. |
65. Kaur, G., Singh, M., Kumar, J., De Beer, T., Nopens, I.:
Mathematical Modelling and Simulation of a Spray Fluidized Bed Granulator. Processes 6 (2018), 195. |
64. Ghosh, D., Kumar, J.:
Existence of mass conserving solution for the coagulation-fragmentation equation with singular kernel. Japan Journal of Industrial and Applied Mathematics 35 (2018), 1283-1302. |
63. Kumbhakar, M., Saha, J., Ghoshal, K., Kumar, J., Singh, V.P.:
Vertical sediment concentration distribution in high-concentrated flows: An analytical solution using Homotopy Analysis Method. Communications in Theoretical Physics 70 (2018), 367-378. |
62. Saha, J., Das, N., Kumar, J., Bück A.:
Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic and Related Models 12 (2019), 79-103. |
61. Paul, J., Kumar, J.:
An existence-uniqueness result for the pure binary collisional breakage equation. Mathematical Methods in the Applied Sciences 41 (2018), 2715-2732. |
60. Saha, J., Kumar, J., Heinrich S.:
On the approximate solutions of fragmentation equations. Proceedings of the Royal Society A 476 (2018). |
59. Singh, M., Kaur, G., Kumar, J., Beer, T., Nopens, I.:
A comparative study of numerical approximations for solving Smoluchowski coagulation equation. Brazilian Journal of Chemical Engineering 35 (2018), 1343 - 1354. |
58. Singh, R., Das, N., Kumar, J.:
The optimal modified variational iteration method for the Lane-Emden equations with Neumann and Robin boundary conditions. The European Physical Journal Plus (2017), 132-251. |
57. Kaur, G., Kumar, J., Heinrich, S.:
A weighted finite volume scheme for multivariate aggregation population balance equation. Computers & Chemical Engineering 101 (2017), 1- 10. |
56. Saha, J., Kumar, J., Heinrich, S.:
A volume-consistent discrete formulation of particle breakage equation. Computers & Chemical Engineering 97 (2017), 147-160. |
55. Singh, M., Kumar, J., Bück, A., Tsotsas, E:
An improved and efficient finite volume scheme for bivariate aggregation population balance equation. Journal of Computational and Applied Mathematics 308 (2016), 83-97. |
54. Saha, J., Kumar, J., Bück, A., Tsotsas, E:
Finite volume approximations of breakage population balance equation. Chemical Engineering Research and Design, 110 (2016), 114-122. |
53. Das, N., Singh, R., Wazwaz A.M., Kumar J.:
An algorithm based on the variational iteration techique for the Bratu-type and the Lane-Emden problems. Journal of Mathematical Chemistry 54 (2016), 527-551. |
52. Kumar, J., Kaur, G., Tsotsas E.:
An accurate and efficient discrete formulation of aggregation population balance equation. Kinetic and Related Models 9 (2016), 373-391. |
51. Singh, M., Kumar, J., Bück, A., Tsotsas, E.:
A volume consistent discrete formulation of aggregation population balance equations. Mathematical Methods in the Applied Sciences 39 (2016), 2275-2286. |
50. Chakraborty, J., Kumar, J., Singh, M., Mahoney, A., Ramkrishna, D.:
Inverse problems in population balances. Determination of aggregation kernel by weighted residuals. Industrial & Engineering Chemistry Research 54 (2015), 10530-10538. |
49. Saha, J., Kumar, J.:
Development of a mass conserving discretization technique for breakage problems and its convergence analysis. International Journal of Advances in Engineering Sciences and Applied Mathematics 7 (2015), 51-61. |
48. Kumar, J., Saha, J., Tsotsas, E.:
Dovelopment and convergenve analysis of a finite volume scheme for solving breakage equation. SIAM Journal on Numerical Analysis 53 (2015), 1672-1689. |
47. Singh, R., Wazwaz, A.M., Kumar, J.:
An efficient semi-numerical technique for solving nonlinear singular boundary value problems arising in various physical models. International Journal of Computer Mathematics 93 (2016), 1330-1346. |
46. Saha, J., Kumar, J.:
The singular coagulation equation with multiple fragmentation. Journal of Applied Mathematics and Physics (ZAMP) 66 (2015), 919-941. |
45. Singh, R., Saha, J., Kumar, J.:
Adomian decomposition method for solving fragmentation and aggregation population balance equations. Journal of Applied Mathematics and Computing 48 (2015), 265-292. |
44. Hussain, M., Kumar, J., Tsotsas, E.:
Micro-Macro transition of population balances in fluidized bed granulation. Procedia Engineering 102 (2015), 1399-1407. |
43. Hussain, M., Kumar, J., Tsotsas, E.:
Modeling aggregation kinetics of fluidized bed spray agglomeration for porous particles. Powder Technology 270, Part B, (2015), 584-591. |
42. Hussain, M., Kumar, J., Tsotsas, E.:
A new framework for population balance modeling of spray fluidized bed agglomeration. Particuology 19 (2105), 141-154. |
41. Singh, R., Nelakanti, G., Kumar, J.:
Approximate solution of two-point boundary value problems using Adomian decomposition method with Green's function. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 85 (2015), 51-61. |
40. Kumar, R., Kumar, J., Warnecke, G.:
Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinetic and Related Models (KRM) 7 (2014), 713-737. |
39. Singh, R., Nelakanti, G., Kumar, J.:
A new efficient technique for solving two-point boundary value problems for integro-differential equations. Journal of Mathematical Chemistry 52 (2014), 2030-2051. |
38. Singh, R., Nelakanti, G., Kumar, J.:
Approximate series solution of singular boundary value problems with derivative dependence using Green's function technique. Computational and Applied Mathematics 33 (2014), 451-467. |
37. Singh, M., Ghosh, D., Kumar, J.:
A comparative study of different discretizations for solving bivariate aggregation population balance equation. Applied Mathematics and Computation 234 (2014), 434-451. |
36. Singh, R., Kumar, J., Nelakanti, G.:
Approximate series solution of fourth-order boundary value problems using decomposition method with Green's function. Journal of Mathematical Chemistry 52 (2014), 1099-1118. |
35. Singh, R., Kumar, J., Nelakanti, G.:
Approximate series solution of nonlinear singular boundary value problems arising in physiology. The Scientific World Journal 2014 (2014), Article ID 945872. |
34. Singh, R., Kumar, J.:
An efficient numerical technique for the solution of nonlinear singular boundary value problems. Computer Physics Communications 185 (2014), 1282-1289. |
33. Hussain, M., Kumar, J., Tsotsas, E.:
Modeling of aggregation kernel using Monte Carlo simulations of spray fluidized bed agglomeration. American Institute of Chemical Engineers (AIChE) Journal 60 (2014), 855-868. |
32. Hussain, M., Kumar, J.,Peglow, M., Tsotsas, E.:
On two-compartment population balance modeling of spray fluidized bed agglomeration. Computers and Chemical Engineering 61 (2014), 185-202. |
31. Singh, R., Nelakanti, G., Kumar, J.:
Approximate solution of Urysohn integral equations using the Adomian decomposition method. The Scientific World Journal 2014 (2014), Article ID 150483. |
30. Singh, R., Kumar, J.:
The Adomian decomposition method with Green's function for solving nonlinear singular boundary value problems. Journal of Applied Mathematics and Computing 44 (2014), 397-416. |
29. Narni, N.R., Peglow, M., Warnecke, G., Kumar, J., Heinrich, S., Kuipers, J.A.M.:
Modeling of aggregation kernels for fluidized beds using discrete particle model simulations. Particuology 13 (2014), 134-144. |
28. Singh, R., Kumar, J.:
A population balance model with simultaneous aggregation and breakage for the analysis for the synthesis of Titanium dioxide nano-particles. Indian Journal of Industrial and Applied Mathematics 4 (2013), 71-81. |
27. Hussain, M., Kumar, J., Peglow, M., Tsotsas, E.:
Modeling spray fludized bed aggregation kinetics on the basis of Monte-Carlo simulation results. Chemical Engineering Science 101 (2013), 35-45. |
26. Kumar, J.:
Comments on 'Collision Efficiency in a Shear Flow [CES 68 (2012) 305-312]'. Chemical Engineering Science 97 (2013), 309-310. |
25. Singh, R., Kumar, J., Nelakanti G.:
Numerical solution of singular boundary value problems using Green's function and improved decomposition method. Journal of Applied Mathematics and Computing 43 (2013), 409-425. |
24. Singh, R., Kumar, J.:
Computation of eigenvalues of singular Sturm-Liouville problems using modified Adomian decomposition method. International Journal of Nonlinear Science (IJNS) 15 (2013) 247-258. |
23. Singh, R., Kumar, J.:
Solving a class of singular two-point boundary value problems using new modified decomposition method. ISRN Computational Mathematics 2013 (2013), Article ID 262863. |
22. Singh, R., Kumar, J., Nelakanti, G.:
New approach for solving a class of doubly singular two-point boundary value problems using Adomian decomposition method. Advances in Numerical Analysis 2012 (2012), Article ID 541083. |
21. Singh, M., Chakraborty, J., Kumar, J., Ramakanth, R.:
Accurate and efficient solution of bivariate population balance equations using unstructured grids. Chemical Engineering Science 93 (2013), 1-10. |
20. Kumar, R., Kumar, J.:
Numerical simulation and convergence analysis of a finite volume scheme for solving general breakage population balance equations. Applied Mathematics and Computation 219 (2013), 5140-5151. |
19. Kumar, R., Kumar, J.,Warnecke, G.:
Moment preserving finite volume schemes for solving population balance equations incorporating aggregation, breakage, growth and source terms. Mathematical Models and Methods in Applied Science 23 (2013), 1235-1273. |
18. Kumar, R., Kumar, J.:
Finite volume scheme for multiple fragmentation equations. International Journal of Numerical Analysis and Modeling, Series B, 3 (2012), 270-284. |
17. Bück, A., Klaunick G., Kumar, J., Peglow, M., Tsotsas, E.:
Numerical simulation of particulate processes for control and estimation by spectral methods. AIChE Journal 58 (2012), 2309-2319. |
16. Kumar, R., Kumar, J., Warnecke, G.:
Numerical methods for solving two-dimensional aggregation population balance equations. Computers and Chemical Engineering 35 (2011), 999-1009. |
15. Giri, A.K., Kumar, J., Warnecke, G.:
The continuous coagulation equation with multiple fragmentations. Journal of Mathematical Analysis and Applications 374 (2011), 71-87. |
14. Kumar, J., Warnecke, G.:
A note on moment preservation of finite volume schemes for solving growth and aggregation population balance equations. SIAM Journal of Scientific Computing 32 (2010), 703-713. |
13. Gokhale, Y.P., Kumar, R., Kumar, J., Hintz, W., Warnecke, G., Tomas, J.:
Disintegration process of surface stabilized sol-gel TiO2 nanoparticles by population balances. Chemical Engineering Science 64 (2009), 5302-5307. |
12. Kumar, J., Warnecke, G., Peglow, M., Heinrich, S.:
Comparison of numerical methods for solving population balance equations incorporating aggregation and breakage. Powder Technology 189 (2009), 218-229. |
11. Kumar, J., Warnecke, G.:
Convergence analysis of sectional methods for solving breakage population balance equations-I. The fixed pivot technique. Numerische Mathematik (Springer) 111 (2008), 81-108. |
10. Kumar, J., Warnecke, G.:
Convergence analysis of sectional methods for solving breakage population balance equations-II. The cell average technique. Numerische Mathematik (Springer) 110 (2008), 539-559. |
9. Kumar, J., Peglow, M., Warnecke, G., Heinrich, S.:
The cell average technique for solving multi-dimensional aggregation population balance equation. Computers and Chemical Engineering 32 (2008), 1810-1830. |
8. Kumar, J., Peglow, M., Warnecke, G., Heinrich, S.:
An efficient numerical technique for solving population balance equation involving aggregation, breakage, growth and nucleation. Powder Technology 182 (2008), 81-104. |
7. Peglow, M., Kumar, J., Hampel, R., Tsotsas, E., Heinrich, S.:
Towards a complete population balance model for fluidized bed spray agglomeration. Drying Technology 25 (2007), 1321-1329. |
6. Peglow, M., Kumar, J., Heinrich, S., Warnecke, G., Mörl, L., Wolf, B.:
A generic population balance model for simultaneous agglomeration and drying in fluidized beds. Chemical. Engineering. Science 62 (2007), 513-532, special issue: Applications of fluidization. |
5. Peglow, M., Kumar, J., Warnecke, G., Heinrich, S., Tsotsas, E., Mörl, L., Hounslow, M.:
An improved discretized tracer mass distribution of Hounslow et al. AIChE Journal 52 (2006), 1326-1332. |
4. Kumar, J., Peglow, M., Warnecke, G., Heinrich, S., Mörl, L.:
Improved accuracy and convergence of discretized population balances for aggregation: The cell average technique. Chemical Engineering Science 61 (2006), 3327-3342. |
3. Peglow, M., Kumar, J., Warnecke, G., Heinrich, S., Mörl, L.:
A new technique to determine rate constants for growth and agglomeration with size and time dependent nuclei formation. Chemical Engineering Science 61 (2006), 282-292. |
2. Kumar, J., Peglow, M., Warnecke, G., Heinrich, S., Mörl, L.:
A discretized model for tracer population balance equation: Improved accuracy and convergence. Computers and Chemical Engineering 30 (2006), 1278-1292. |
1. Peglow, M., Kumar, J., Mörl, L.: Investigation of coalescence kinetics of microcristalline cellulose in fluidized bed spray agglomeration- experimental studies and modelling approach. Brazilian Journal of Chemical Engineering 22 (2005), 165-172. |
8. Das, A., Kumar, J.:
Mathematical Modeling of Different Breakage PBE Kernels Using Monte Carlo Simulation Results
In: Optimization of Pharmaceutical Processes(Eds.: Fytopoulos, A., Ramachandran, R., Pardalos, P.M.),
Springer Optimization and Its Applications, Volume 189, 2022, ISBN 978-3-030-90924-6 |
7. Bhattacharyya, S., Kumar, J., Ghoshal, K., Eds:
Mathematical Modeling and Computational Tools.
Springer Proceedings in Mathematics & Statistics, Volume 320, 2020, ISBN 978-981-15-3614-4 |
6. Ghosh, D., Kumar, J.:
Uniqueness and Asymptotic Behavior of the Solutions to a Singular Coagulation-Fragmentation Equation.
In: Mathematical Modeling and Computational Tools (Eds.: Bhattacharyya, S., Kumar, J., Ghoshal, K.),
Springer Proceedings in Mathematics & Statistics, Volume 320, 2020, ISBN 978-981-15-3614-4 |
5. Mohan, S., Debnath, S., Ghoshal, K., Kumar, J.:
Distribution of Two-Dimensional Unsteady Sediment Concentration in an Open Channel Flow.
In: Mathematical Modeling and Computational Tools (Eds.: Bhattacharyya, S., Kumar, J., Ghoshal, K.),
Springer Proceedings in Mathematics & Statistics 320, 2020, ISBN 978-981-15-3614-4 |
4. Ghosh, D., Kumar, J.:
Existence of equilibrium solution of the coagulation-fragmentation equation with linear fragmentation kernel.
In: Mathematics and Computing (Eds.: Ghosh, D., Giri, D., Mohapatra, R.N., Sakurai, K., Savas, E., Som, T.),
Springer Proceedings in Mathematics & Statistics 253, 2018, ISBN 978-981-13-2094-1 |
3. Kumar, J., Peglow, M., Heinrich, S., Warnecke, G., Tsotsas, E., Hounslow, M.J.:
Numerical Methods for Solving Population Balances.
In: Modern Drying Technology, Volume 1: Computational Tools at Different Scales (Eds.: Tsotsas, E.; Mujumdar, A.S.), WILEY-VCH, 2011, pages 57, ISBN 978-3-527-31556-7 |
2. Gokhale, Y.P., Kumar, J., Hintz W., Warnecke G., Tomas, J.:
A Note on Sectional and Finite Volume Methods for Solving Population Balance Equations.
In: Micro-Macro-Interactions in Structured Media and Particle Systems (Eds.: Bertram A., Tomas J.), Springer-Verlag Berlin Heidelberg, 2008, pages 11, ISBN 978-3-540-85714-3 |
1. Gokhale, Y.P., Kumar, J., Hintz W., Warnecke G., Tomas, J.: Population Balance Modelling for Agglomeration and Disintegration of Nanoparticles. In: Micro-Macro-Interactions in Structured Media and Particle Systems (Eds.: Bertram A., Tomas J.), Springer-Verlag Berlin Heidelberg, 2008, pages 11, ISBN 978-3-540-85714-3 |
3. Narni, N.R., Warnecke, G., Kumar, J., Peglow, M., Heinrich S.:
Some modeling aspects of aggregation kernels and aggregation population balance equations.
In: Mathew J., Patra P., Pradhan D.K., Kuttyamma A.J. (Eds) Eco-friendly Computing and Communication Systems(ICECCS 2012). Communications in Computer and Information Science, vol 305. Springer, Berlin, Heidelberg. |
2. Singh, M., Kumar, J., Bueck, A.:
A volume conserving discrete formulation of aggregation population balance equation on non-uniform meshes.
IFAC-PapersOnLine 48 (2015), 192-197, 8th Vienna International Conference on Mathematical Modelling, MATHMOD 2015; Vienna; Austria, February 18-20, 2015 |
1. Kumar, J., Warnecke, G.: A numerical scheme for solving coagulation-fragmentation equations. AIP Conference Proceedings 1048 (2008), 931-934, International Conference on Numerical Analysis and Applied Mathematics, September 16-20, 2008, Kos, Greece |
13. Kaur, G., Singh, M., Matsoukas, T., Kumar, J., Beer, T.D., Nopens, I.:
Modeling and simulation of spray fluidized bed granulator.
Proceedings of the 6th International Conference on Population Balance Modelling, 7-9th May 2018, Ghent, Belgium. |
12. Saha, J., Kumar, J., Bueck, A., Tsotsas, E.:
Finite Volume Approximations of Population Balance Equations.
Proceedings of the 7th International Granulation Conference, 1.-3. July 2015, Sheffield/UK. |
11. Hussain, M., Kumar, J., Tsotsas, E.:
A new approach in population balance modeling of spray fluidized bed agglomeration.
Proceedings of the 7th World Congress on Particle Technology,19-22nd May 2014, Beijing, China. |
10. Hussain, M., Kumar, J., Peglow, M., Tsotsas, E.:
Modeling the effect of influencing parameters in a spray fluidized bed granulation.
Proceedings of the 5th International Conference on Population Balance Modelling, 11-13th September 2013, Bangalore, India. |
9. Hussain, M., Kumar, J., Peglow, M., Tsotsas, E.:
Simulating the spray fluidized bed granulation by modeling the aggregation efficiency.
Proceedings of the 6th International Granulation Conference, 26-28th June 2013, Sheffield, U.K. |
8. Hussain, M., Kumar, J., Peglow, M., Tsotsas, E.:
Modeling the effect of process parameters in aggregation kernel of PBE using Monte-Carlo simulations.
Proceedings of the 18th International Drying Symposium, 11-15th November 2012, Xiamen, China. |
7. Hampel, R., Peglow, M., Kumar, J., Tsotsas, E., Heinrich, S.:
Study of agglomeration kinetics in fluidized beds referring to the moisture content of particles.
Proceedings of 3rd International Conference on Population Balance Modelling, September 19-21, 2007, Quebec City - Canada, 8 pages. |
6. Narni, N.R., Warnecke, G., Kumar, J., Peglow, M., Heinrich, S.:
Population balance modelling using discrete particle method.
Workshop: Micro-macro interactions in structured media and particle systems, November 24-25, 2006, Helmstedt. Proceedings DFG-Graduiertenkolleg 828, Otto-von-Guericke University Magdeburg, Germany, 2006, 5 pages. |
5. Peglow, M., Kumar, J., Tsotsas, E., Heinrich, S., Warnecke, G., Mörl, L.:
A population balance modelling for simultaneous drying and agglomeration.
Proceedings of the 15th International Drying Symposium (IDS'2006), Budapest, Hungary, August 20-23, 2006, 8 pages. |
4. Link, J.M., Godlieb, W., Tripp, P., Deen, N.G., Heinrich, S., Peglow, M., Kumar, J., Kuipers, J.A.M., Schoenherr, M., Mörl, L.:
Comparison of fibre optical measurements and discrete element simulations for the study of granulation in a spout fluidized bed.
Proceedings of the 5th World Congress on Particle Technology, Orlando/Florida, USA, April 23-27, 2006, 8 pages, Fluidization and Multiphase Flow/Separations, Session 260 - Fundamentals of Fluidization and Fluid Particle Systems - IV. |
3. Kumar, J., Peglow, M., Warnecke, G., Heinrich, S., Tsotsas, E., Mörl, L.:
Numerical solutions of a two-dimensional population balance equation for aggregation.
Proceedings of the 5th World Congress on Particle Technology, Orlando/Florida, USA, April 23-27, 2006, 10 pages, Particle Design: Formation and Processing, Session 155 - Modelling of Particle Formation Processes - I. |
2. Peglow, M., Kumar, J., Heinrich, S., Tsotsas, E., Warnecke, G., Mörl, L.:
A novel multi-dimensional population balance modelling incorporating particle size enlargement and drying behaviour for fluidized bed spray granulation.
Proceedings of the 5th World Congress on Particle Technology, Orlando/Florida, USA, April 23-27, 2006, 10 pages, WCPT5 Tutorials, Session 70: Poster Session. |
1. Peglow, M., Kumar, J., Mörl, L.: Investigation of coalescence kinetics of microcrystalline cellulose in fluidized bed spray agglomeration- experimental studies and modelling approach. Proceedings of the 14th International Drying Symposium (IDS 2004), Sao Paulo, Brazil, August 22-25, 2004, vol. A, pp. 485 - 492, ISBN 85-904573-1-1. |