
Semianalytical Solution for Simultaneous Distribution
of Fluid Velocity and Sediment Concentration

in Open-Channel Flow
Shiv Mohan1; Manotosh Kumbhakar2; Koeli Ghoshal3; and Jitendra Kumar4

Abstract: To understand the sediment-transport process in an open-channel turbulent flow, the time-averaged profiles of streamwise fluid
velocity and volumetric particle concentration in suspension must be given simultaneous treatment because they are closely interrelated
through particle–turbulence interaction. Presence of sediment particles increases the density of a fluid-sediment mixture, which makes
the flow stratified and obstructs the settling of sediment particles. The greater the amount of sediment particles in fluid, the stronger
the effects of stratification and hindered settling. Therefore, generalizing existing works, this study attempts to model the velocity and con-
centration simultaneously, incorporating the aforementioned effects. The coupled system of odes arising from the derivation is strongly
nonlinear in nature, and the analytical solution needs a special mathematical tool. To that end, a novel analytical method called the homotopy
analysis method (HAM) is employed to obtain the explicit series solution to the system. The methodology is a nonperturbation approach, and
the convergence can be tackled easily through some convergence control parameters. The solutions obtained are found to be stable and
are validated with numerical solution as well as with relevant experimental data available in the literature. Further, the models have been
physically interpreted through the effects of the turbulent factors incorporated. DOI: 10.1061/(ASCE)EM.1943-7889.0001671. © 2019
American Society of Civil Engineers.
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Introduction

Problems related to flows carrying suspended sediment are an im-
portant topic of research in the field of fluvial hydrodynamics due
to their direct practical concern for many engineering applications.
For better understanding of the sediment-transport mechanism in a
turbulent flow, experimental and theoretical investigations have
long been carried out, and numerous models have been developed.
But the fluctuating behavior of turbulence always makes its nature
unpredictable and does not allow any model to be universal that can
be applied under any hydraulic condition. Therefore, investigations
on turbulent flow can never come to an end. The streamwise veloc-
ity of fluid, as well as the suspended-sediment concentration along
a vertical, play significant roles in the erosion and transportation
process of sediment. The present study attempts to make a predic-
tion of both the vertical distribution of time-averaged fluid velocity
in the streamwise direction and particle concentration in suspension

together to gain comprehensive knowledge on the mechanism of
sediment transport.

Modeling of the vertical distribution of streamwise velocity and
particle concentration started in the twentieth century. Credit for
the first development of analytical expressions of velocity and con-
centration goes to Prandtl (1932) and Rouse (1937), respectively.
Rouse (1937) used the logarithmic law of velocity distribution
established by Prandtl (1932) and found an analytical solution
for the one-dimensional diffusion equation, which is famous under
his name (Rouse equation) only. Following their works, researchers
continued developing models incorporating several effects such as
particle–particle collision, particle–turbulence interaction, secon-
dary current, damping of mixing length, and hindered settling due
to presence of particles, among others. Mostly, researchers concen-
trated either on velocity distribution (Umeyama and Gerritsen
1992; Guo and Julien 2002; Absi 2011; Kundu and Ghoshal
2012; Lassabatere et al. 2012; Lu et al. 2018) or concentration
distribution (Rouse 1937; Lane and Kalinske 1941; Hunt 1954;
Umeyaina 1992; Huang et al. 2008; Ghoshal and Kundu 2013;
Pal and Ghoshal 2017). But velocity and concentration are inter-
related, and therefore need not separate but simultaneous treatment,
which has been done by few (Tsai and Tsai 2000; Mazumder and
Ghoshal 2002; Pal and Ghoshal 2016b), possibly due to complexity
in modeling. Few researchers (Villaret and Trowbridge 1991;
Ghoshal and Mazumder 2005) included sediment-induced stratifi-
cation in their models, which is an important effect in a flow carry-
ing sediments.

Density of a water-sediment mixture decreases with increasing
elevation from the bed, and this stable stratification causes turbulent
mixing of both momentum and sediment mass along the vertical. In
brief, stratification effects lead to a velocity profile that increases
faster than the logarithmic profile along a vertical and lead to a
concentration profile that decreases faster than the Rousean profile
along a vertical. Smith (1975) and Smith and McLean (1977a, b)

1Junior Research Scholar, Dept. of Mathematics, Indian Institute of
Technology Kharagpur, Kharagpur 721302, India. Email: shivmohan58@
gmail.com

2Senior Research Scholar, Dept. of Mathematics, Indian Institute of
Technology Kharagpur, Kharagpur 721302, India. Email: manotosh
.kumbhakar@gmail.com

3Associate Professor, Dept. of Mathematics, Indian Institute of Technol-
ogy Kharagpur, Kharagpur 721302, India (corresponding author). Email:
koeli@maths.iitkgp.ac.in

4Associate Professor, Dept. of Mathematics, Indian Institute of Technol-
ogy Kharagpur, Kharagpur 721302, India. Email: jkumar@maths.iitkgp
.ac.in

Note. This manuscript was submitted on December 18, 2018; approved
on March 25, 2019; published online on September 13, 2019. Discussion
period open until February 13, 2020; separate discussions must be sub-
mitted for individual papers. This paper is part of the Journal of Engineer-
ing Mechanics, © ASCE, ISSN 0733-9399.

© ASCE 04019090-1 J. Eng. Mech.

 J. Eng. Mech., 2019, 145(11): 04019090 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

In
di

an
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
K

ha
ra

gp
ur

 o
n 

09
/1

3/
19

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



can be considered the first to make a quantitative formulation on
stratification effects based on simple algebraic closures. The effect
is expressed through flux Richardson number (Wright and Parker
2004; Garcia 2008), which clearly shows that the greater the
amount of sediment present in the flow, the stronger the effect of
stratification.

Apart from stratification effects, the sediment present in the
suspension increases the density of the fluid, leading to an incre-
ment in the buoyancy force; as a result, the particle settling velocity
is substantially reduced. Maude and Whitmore (1958) designated
this phenomenon as hindered settling. Thacker and Lavelle (1977)
incorporated the effect of concentration in the settling velocity
through a factor ð1 − cÞnH multiplied by the clear-water settling
velocity ω0, where c is the concentration per unit volume and
nH is the exponent of the reduction in fall velocity. Later, many
researchers (Lavelle and Thacker 1978; Woo et al. 1988;
Winterwerp et al. 1990; Jing et al. 2018; Pal and Ghoshal 2013)
showed the importance of including this effect in the vertical dis-
tribution of concentration. Very few researchers (Ghoshal and
Mazumder 2005) used both stratification and the hindered settling
effect to model velocity and concentration. But inclusion of these
effects in the model of velocity and concentration led researchers to
go for numerical solutions only. In fact, all other aforementioned
developments are based on mainly numerical solutions.

Analytical and numerical methods are the two ways to solve a
mathematical problem, and both methods have advantages and dis-
advantages. Due to complexity in sediment-transport models, re-
searchers avoid going for an analytical solution. Herrmann and
Madsen (2007) took into account the one-dimensional diffusion
equation including the effect of stratification and went for an ana-
lytical solution of vertical concentration and closed-form solution
of velocity considered together. They neglected several important
factors in their modeling, maybe in order to achieve an analytical
solution. The stratification effect is more pronounced in highly con-
centrated flow where the one-dimensional diffusion equation must
be replaced by continuity equations for sediment and water sepa-
rately, as presented first by Hunt (1954). Herrmann and Madsen
(2007) considered the stratification effect but used the simple
one-dimensional diffusion equation and also neglected the effect
of hindered settling. They used several fitting parameters to match
their model with laboratory experimental data. The present study
mainly makes an extension to the work of Herrmann and Madsen
(2007) by using the Hunt’s diffusion equation as the governing
equation taking into account both velocity and concentration equa-
tions simultaneously including stratification and hindered settling
effect together with the nonequality of sediment and momentum
diffusion coefficient and attempts to provide an approximate series
solution despite the complexity of the problem.

To deal with the system of nonlinear odes developed in the
present study to determine vertical velocity and concentration
profiles, a novel unified method known as homotopy analysis
method (HAM) developed by Liao (1992) has been adopted.
The classical perturbation method (Nayfeh 2011) and asymptotic
method (Grasman 2012; Lagerstrom 2013), among others, have
been widely used to obtain analytical approximations of nonlinear
problems that arise in science and engineering. But these methods
have limitations because they are strongly dependent on small/large
parameters, and their validity is confined to weakly nonlinear
problems. In contrast, in the last two decades, HAM has extensively
been used to deal with a variety of strong nonlinear problems such
as (1) finding purely analytic and uniformly valid analytic solution
of the two-dimensional (2D) laminar viscous flow over a semi-
infinite flat plate (Liao 1999a, b); (2) deriving a solution for the
classical problem of nonlinear progressive waves in deep water

(Liao and Cheung 2003); (3) solving the generalized Benjamin-
Bona-Mahony (BBM) equation (Abbasbandy 2008); (4) solving
the nonlinear Riccati differential equation with fractional order
(Cang et al. 2009); (5) studying convective heat transfer in a nano-
fluid flow over a stretching surface (Vajravelu et al. 2011); (6) ana-
lyzing elliptic differential equations and related boundary-value
problems (Van Gorder 2012); (7) investigating steady-state reso-
nance of multiple surface gravity waves in deep water (Liu and
Liao 2014); (8) gaining the wave profiles of the limiting Stokes
waves (Zhong and Liao 2018); and (9) solving one-dimensional
time-fractional advection-dispersion equations (Singh et al. 2017),
among others.

Indeed, the method is a unified one that logically contains
Lyapunov’s small artificial parameter method (Lyapunov 1992),
Adomian decomposition method (Adomian 2013), homotopy
perturbation method (HPM) (He 1999; Massa et al. 2011),
δ-expansion method (Karmishin et al. 1990), and the Euler trans-
form (Agnew 1944) as special cases. On the other hand, to the best
of the authors’ knowledge, HAM was applied successfully in
sediment-transport problem for the first time by Kumbhakar
et al. (2018), who provided an explicit analytical solution for the
generalized diffusion equation. The present study aims to extend
the applicability of HAM to the area of sediment transport by
solving the coupled nonlinear equations for velocity and concen-
tration with stratification and hindered settling effects. The derived
approximate series solution has been validated with a numerical
solution and also compared with laboratory experimental data.
The importance of incorporation of stratification and hindered
settling mechanism has been made clear through graphical repre-
sentation and discussion.

Mathematical Modeling

Governing Equation

A sediment-laden flow of depth h in a wide open channel in which
the time-averaged velocity and suspended-sediment concentration,
along with the eddy viscosity, vary in the vertical direction from
the reference level to the water surface is presented schematically
in Fig. 1. In a steady uniform sediment-laden turbulent flow in an
open channel, the equation for suspended-sediment concentration
derived by Hunt (1954) considering the solid phase and fluid phase
separately is

Flow 

Fig. 1. Schematic diagram of velocity, eddy viscosity, and sediment
concentration distribution along a vertical in an open-channel turbulent
flow over a sediment bed. Within the reference level, i.e., z ≤ a,
sediments move as bed load and above that as suspended load.
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ϵs
dc
dz

þ ðϵt − ϵsÞc
dc
dz

þ ωscð1 − cÞ ¼ 0 ð1Þ

where c = volumetric suspended sediment concentration; ϵs and
ϵt = sediment diffusivity and turbulent diffusivity, respectively;
and ωs = terminal fall velocity of sediment particles. The ratio
of ϵs to ϵt is called the inverse of the Schmidt number, and in
the present work, it is denoted by α. Mostly, researchers consider
α to be a constant over the entire flow depth and assume it to be
1 for computational conveniences. However, researchers concluded
based on experimental results that α-values are different for
different-sized particles (Rijn 1984; Majumdar and Carstens 1967;
Jobson and Sayre 1970; Coleman 1970). Therefore, the assumption
α ≈ 1 may not be physically realistic but rather a crude approxi-
mation for easy calculation. Apart from parameter α, the other
parameter present in Eq. (1) is the settling velocity ωs for a
sediment particle whose magnitude is lower in the presence of sur-
rounding particles compared with that in clear fluid. This phenome-
non is commonly known as the hindered settling mechanism, and
regarding this, the following expression proposed by Richarson and
Zaki (1954) has been widely used:

ωs ¼ ω0ð1 − cÞnH ð2Þ

where ω0 = settling velocity of sediment in clear fluid; and
nH = exponent of reduction of settling velocity. Therefore, for
sediment-laden flow, the present study considers Eq. (2) in the
governing Eq. (1).

The governing equation for time-averaged velocity in a steady
turbulent flow can be written from Boussinesq approximation

ϵt
du
dz

¼ u2�

�
1 − z

h

�
ð3Þ

where u� ¼
ffiffiffiffiffiffiffiffiffiffiffiffijτ0j=ρ

p
is the shear velocity, where τ0 is the bed shear

stress and ρ is the fluid density; and h = maximum flow depth.
The suspended-sediment concentration decreases along a verti-

cal; as a result, the mass density of the sediment-fluid mixture also
decreases with an increase in elevation above the bed. In particular,
the region near the bed having a high sediment concentration is
known as the heavy fluid zone, and the rest of the region where
the concentration is relatively low is known as the light fluid zone
(Dey 2014). As such, the whole region behaves like a stably strati-
fied flow region, due to which the process of turbulent mixing of
the fluid momentum and the sediment mass in vertical slows down.
As a result, the expressions for the distribution of both the flow
velocity and the sediment concentration are modified because
the sediment concentration decreases and flow velocity increases
rapidly in vertical. Smith and McLean (1977b) expressed the sedi-
ment diffusivity and turbulent diffusivity by incorporating the effect
of stratification in the following forms, respectively:

ϵs ¼ ϵs0ð1 − βRfÞ ð4Þ

ϵt ¼ ϵt0ð1 − βRfÞ ¼
ϵs0
α

ð1 − βRfÞ ð5Þ

where ϵt0 and ϵs0 = neutral turbulent and sediment diffusivity, re-
spectively; β = stratification correction parameter; and Rf = flux
Richardson number, which can be expressed as follows (Monin
and Yaglom 1971):

Rf ¼ − gΔϵs dc
dz

ϵtðdudzÞ2
ð6Þ

where g = gravitational acceleration; and Δ ¼ ðρs=ρÞ − 1, where
ρs is sediment density and ρ is fluid density.

Substituting the expressions of ϵs and ϵt given by Eqs. (4) and
(5) into Eqs. (1) and (3), one obtains the following system of two
coupled odes:

ϵt0ð1 − βRfÞ½αþ ð1 − αÞc� dc
dz

þ ω0cð1 − cÞnHþ1 ¼ 0 ð7Þ

ϵt0ð1 − βRfÞ
du
dz

¼ u2�

�
1 − z

h

�
ð8Þ

Eqs. (7) and (8) represent the vertical distribution of suspended-
sediment concentration and fluid velocity in a steady turbulent
flow. It can be seen from Eqs. (7) and (8) that the determination
of u and c needs the expression for neutral turbulent diffusivity.
The available profiles of ϵt0 are of three types: constant, linear,
and parabolic (Rijn 1984). Of these, the parabolic profile estimates
experimental data better than the others (Graf and Cellino 2002).
Therefore, the following expression is considered for neutral
turbulent diffusivity:

ϵt0 ¼ κu�z
�
1 − z

h

�
ð9Þ

By substituting dc=dz, du=dz, ϵs, ϵt, and ϵt0 given by Eqs. (1),
(3)–(5), and (9), respectively, into Eq. (6), after some algebraic
calculations, the following are obtained:

Rf ¼ γαzcð1 − cÞnHþ1

ð1 − z
hÞ½αþ ð1 − αÞc� þ βγαzcð1 − cÞnHþ1

ð10Þ

⇒1 − βRf ¼ ð1 − z
hÞ½αþ ð1 − αÞc�

ð1 − z
hÞ½αþ ð1 − αÞc� þ βαγzcð1 − cÞnHþ1

ð11Þ

where γ ¼ κgΔω0=u3�. Replacing 1 − βRf in Eqs. (7) and (8) and
making the equations nondimensional by using the reference
concentration ca, shear velocity u�, and maximum flow depth h,
the governing equations in the simplified form are obtained as
follows:

κu�ξð1 − ξÞ2½αþ ð1 − αÞcaC�2
dC
dξ

þ ω0Cð1 − caCÞnHþ1ðð1 − ξÞ½αþ ð1 − αÞcaC�
þ βαγcahCξð1 − caCÞnHþ1Þ ¼ 0 ð12Þ

κξð1 − ξÞ½αþ ð1 − αÞcaC�
dU
dξ

¼ ð1 − ξÞ½αþ ð1 − αÞcaC� þ βαγcahCξð1 − caCÞnHþ1 ð13Þ

where the nondimensionalization is done as follows: ξ ¼ z=h,
C ¼ c=ca, and U ¼ u=u�.

Boundary Conditions

To solve coupled equations Eqs. (12) and (13) simultaneously,
specified values of u and c are required at a common elevation,
say z ¼ a, which is termed the reference level in the present study.
To that end, the following boundary conditions are prescribed:

cðz ¼ aÞ ¼ ca ð14Þ

uðz ¼ aÞ ¼ ua ð15Þ

© ASCE 04019090-3 J. Eng. Mech.
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where ca and ua = reference concentration and reference velocity,
respectively. Boundary conditions are made dimensionless as
follows:

Cðξ ¼ ξaÞ ¼ 1 ð16Þ

Uðξ ¼ ξaÞ ¼
ua
u�

ð17Þ

where ξa = dimensionless reference level defined as ξa ¼ a=h.
It can be seen that the coupled odes given by Eqs. (12) and (13)

are highly nonlinear due to the power term ð1 − caCÞnHþ1. The pri-
mary objective of this study is to find an analytical solution to that
system, which essentially needs special mathematical treatment
such as that presented in the next section.

Approximate Series Solution Based on HAM

Liao (1992) proposed an approximate analytical method known as
the homotopy analysis method, which is essentially based on the
idea of homotopy, a fundamental concept in topology, for solving
strongly nonlinear problems. The methodology of HAM is ex-
plained for solving the system of nonlinear ordinary differential
equations. For that purpose, let the system be written as follows:

N i½yiðξÞ� ¼ 0; i ¼ 1; 2; : : : ; n ð18Þ
where N i = nonlinear operators; ξ = independent variable; yiðξÞ =
unknown functions that need to be determined; and n = number of
equations in the system. Liao (1992) constructed the so-called
zero-order deformation equation by generalizing the traditional
homotopy as follows:

ð1 − qÞLi½Φiðξ; qÞ − yi;0ðξÞ� − qhiHiðξÞN i½Φiðξ; qÞ� ¼ 0 ð19Þ
with the boundary conditions

Φiðξa; qÞ ¼ yiðξ ¼ ξaÞ ð20Þ
where Li = auxiliary linear operators with the property that

Lig ¼ 0 when g ¼ 0 ð21Þ
where Φiðξ; qÞ = unknown functions; yi;0ðξÞ = initial approxima-
tions of yiðξÞ; hi = nonzero auxiliary parameters known as conver-
gence control parameters that control the rate of convergence of the
series; HiðξÞ not equal to zero (≠) 0 = auxiliary functions; and
q ∈ ½0; 1� = embedding parameter such that as q increases from
0 to 1, Φiðξ; qÞ varies from initial approximations yi;0ðξÞ to the
exact solutions yiðξÞ of the nonlinear equations. Mathematically,
it can be written as follows:

Φiðξ; 0Þ ¼ yi;0ðξÞ and Φiðξ; 1Þ ¼ yiðξÞ ð22Þ
Due to the dependency of Φiðξ; qÞ on q, it can be expand in

Taylor series about q ¼ 0 as follows:

Φiðξ; qÞ ¼ Φiðξ; 0Þ þ
X∞
m¼1

yi;mðξÞqm ð23Þ

where

yi;mðξÞ ¼
1

m!

∂mΦiðξ; qÞ
∂qm

����
q¼0

ð24Þ

known as mth-order deformation derivatives. According to Liao
(2003), the convergence behavior of the series totally depends
on the selection of linear operators Li, auxiliary parameters hi,

auxiliary functions HiðξÞ, and initial approximations yi;0ðξÞ.
Assuming that Li, hi, HiðξÞ, and yi;0ðξÞ are chosen in such a way
that the series Eq. (23) converges at q ¼ 1, then at q ¼ 1, Eq. (23)
becomes

Φiðξ; 1Þ ¼ Φiðξ; 0Þ þ
X∞
m¼1

yi;mðξÞ ð25Þ

Using Eq. (22), series Eq. (25) becomes

yiðξÞ ¼ yi;0ðξÞ þ
X∞
m¼1

yi;mðξÞ ð26Þ

Eq. (26) provides a relationship between the initial guesses
yi;0ðξÞ and final solutions yiðξÞ through the higher-order terms
yi;mðξÞ. The higher-order terms yi;mðξÞ for m ≥ 1 can be obtained
by differentiating the zero-order deformation equation Eq. (19) m
times with respect to embedding parameter q, setting q ¼ 0, and
then dividing by m! as follows:

Li½yi;mðξÞ − χmyi;m−1ðξÞ� ¼ hiHiðξÞRi;mð~yi;m−1Þ ð27Þ

subject to

yi;mðξaÞ ¼ 0 ð28Þ

where

χm ¼
�
0 if m ≤ 1

1 otherwise
ð29Þ

and

Ri;mð~yi;m−1Þ ¼
1

ðm − 1Þ!
∂m−1N i½Φiðξ; qÞ�

∂qm−1

����
q¼0

ð30Þ

It can be seen from Eq. (26) that HAM transfers the original
nonlinear problem governed by Eq. (18) into infinitely many linear
subproblems through its higher-order deformation Eq. (27) to-
gether with the boundary conditions Eq. (28). The solution can then
be approximated up to a finite number of terms, i.e., as follows:

yiðξÞ ≈
Xm
n¼0

yi;nðξÞ ð31Þ

which is known as the mth-order approximation of HAM.
The methodology has great freedom to choose Li, HiðξÞ, and
yi;0ðξÞ, as shown by Liao (2003), who also proposed some funda-
mental rules such as the rule of solution expression, rule of coef-
ficient ergodicity, and rule of solution existence, to assist in the
selection.

In the present study, two coupled nonlinear odes governed by
Eqs. (12) and (13) subject to the boundary condition Eqs. (16)
and (17) are to be solved by HAM. For that purpose, let the solu-
tions CðξÞ and UðξÞ be represented by the following set of base
functions:

fξn½lnðξÞ�m∶ n;m ¼ 0; 1; 2; : : : ; g ð32Þ
in the form of

CðξÞ ¼
X∞
n¼0

X∞
m¼0

cn;mξn½ln ξ�m ð33Þ

and

© ASCE 04019090-4 J. Eng. Mech.
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UðξÞ ¼
X∞
n¼0

X∞
m¼0

dn;mξn½ln ξ�m ð34Þ

where cn;m and dn;m = coefficients. According to the rule of sol-
ution expression and the given boundary condition Eqs. (16) and
(17), one can simply choose

y1;0ðξÞ ¼ 1 and y2;0ðξÞ ¼
ua
u�

þ λðξ − ξaÞ ð35Þ

as the initial approximations of CðξÞ and UðξÞ, respectively,
where λ = additional convergence control parameter that needs
to be determined. The auxiliary linear operators are chosen as
follows:

L1½Φ1ðξ; qÞ� ¼ ξ
∂Φ1ðξ; qÞ

∂ξ ð36Þ

and

L2½Φ2ðξ; qÞ� ¼ ξ
∂Φ2ðξ; qÞ

∂ξ ð37Þ

with the property that

Li½Ai� ¼ 0; i ¼ 1; 2 ð38Þ

where Ai = constants.
Nonlinear operators are expressed as follows:

N 1½Φ1ðξ;qÞ;Φ2ðξ;qÞ�

¼ κu�ξð1− ξÞ2½αþ ð1− αÞcaΦ1�2
dΦ1

dξ
þ ω0Φ1ð1− caΦ1ÞnHþ1

× ðð1− ξÞ½αþ ð1− αÞcaΦ1� þ βαγcahξΦ1ð1− caΦ1ÞnHþ1Þ
ð39Þ

N 2½Φ1ðξ; qÞ;Φ2ðξ; qÞ� ¼ κξð1 − ξÞ½αþ ð1 − αÞcaΦ1�
dΦ2

dξ

− ð1 − ξÞ½αþ ð1 − αÞcaΦ1�
þ βαγcahξΦ1ð1 − caΦ1ÞnHþ1 ð40Þ

For simplicity in computation, the auxiliary functionsHiðξÞ ¼ 1
are chosen for i ¼ 1; 2. Now applying the inverse of linear
operators given by Eqs. (36) and (37) and using the boundary con-
ditions, the higher-order terms y1;mðξÞ and y2;mðξÞ form ≥ 1 can be
calculated according to Eq. (27) as follows:

y1;m ¼ χmy1;m−1ðξÞ þ h1

Z
ξ

ξa

1

ξ
R1;mð~y1;m−1Þdξ ð41Þ

and

y2;m ¼ χmy2;m−1ðξÞ þ h2

Z
ξ

ξa

1

ξ
R2;mð~y2;m−1Þdξ ð42Þ

where

R1;mð~yi;m−1Þ ¼ κu�ξð1− ξÞ2½α2y 0
1;m−1

þð1−αÞ2c2a
Xm−1

i¼0

y 0
1;m−1−i

Xi
j¼0

y1;jy1;i−j

þ 2αð1−αÞca
Xm−1

i¼0

y1;m−i−1y 0
1;i�

þω0ð1− ξÞ½D̂m−1½f1ðΦ1Þ�jq¼0 þ D̂m−1½f2ðΦ1Þ�jq¼0�
þ βαγcahξD̂m−1½f3ðΦ1Þ�jq¼0 ð43Þ

and

R2;mð~yi;m−1Þ ¼ κξð1 − ξÞ
�
αy 0

2;m−1 þ ð1 − αÞca
Xm−1

i¼0

y1;m−i−1y 0
2;i

�

− ð1 − ξÞαð1 − χmÞ − ð1 − ξÞð1 − αÞcay1;m−1
− βαγhcaξD̂m−1½f4ðΦ1Þ�jq¼0 ð44Þ

where D̂m ≡ 1
m!

∂m
∂qm, f1ðΦ1Þ ¼ αΦ1ð1 − caΦ1ÞnHþ1, f2ðΦ1Þ¼

ð1−αÞcaðΦ1Þ2ð1−caΦ1ÞnHþ1, f3ðΦ1Þ¼ω0ðΦ1Þ2ð1−caΦ1Þ2ðnHþ1Þ,
f4ðΦ1Þ ¼ Φ1ð1 − caΦ1ÞnHþ1 and

D̂m½fðΦÞ� ¼
8<
:
P

m−1
k¼0

�
1 − k

m

�
D̂m−kðΦÞ ∂

∂Φ D̂k½fðΦÞ�; if m ≥ 1

fðΦÞ; if m ¼ 0

ð45Þ
The proof for the derivation of Eq. (45) can be found in

Appendix I. Finally, the mth-order HAM-based approximation
for the concentration and velocity distribution according to Eq. (31)
can be written explicitly as follows, respectively:

CðξÞ ¼ y1ðξÞ ≈
Xm
n¼0

y1;nðξÞ ð46Þ

and

UðξÞ ¼ y2ðξÞ ≈
Xm
n¼0

y2;nðξÞ ð47Þ

For the sake of completeness, the theoretical convergence analysis
for the series solutions obtained is given in Appendix II.

Results and Discussion

This section discusses the validation of approximate analytical
series solutions of Eqs. (12) and (13) obtained by HAM with
the numerical solution as well as with experimental data available
in the literature. The rest focuses on the physical interpretation of
the several turbulent mechanisms included in the model.

Validation of the HAM-Based Solution

It can be observed that the series solution expressions for
suspended-sediment concentration and flow velocity obtained by
HAM given by Eqs. (46) and (47), respectively, are functions of
ξ, h1, h2, and λ. As suggested by Liao (2003), the convergence
control parameters h1, h2, and λ play a significant role in control-
ling the convergence behavior of the series solutions Eqs. (46) and
(47). Therefore, an appropriate choice of these convergence control
parameters will lead toward the convergence of series solutions to
the exact solutions. Liao (2003) proposed a h-level curve method to
determine the optimal values of these parameters. However this

© ASCE 04019090-5 J. Eng. Mech.
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method is not particularly appropriate for choosing the best optimal
values of the parameters so that the series converges faster. Later,
Liao (2012) proposed a new method, called the square residual
error method, to determine the convergence control parameters,
in which the square residual error is minimized to get the optimum
value of convergence parameters. The square residual error is
defined as follows:

ε ¼
Z

1

ξa

fðN 1½CðξÞ;UðξÞ�Þ2 þ ðN 2½CðξÞ;UðξÞ�Þ2gdξ ð48Þ

where CðξÞ and UðξÞ ¼ mth-order HAM-based solution given by
Eqs. (46) and (47), respectively. To avoid the computational
difficulty in integration, the square residual error can be written
in discrete form as follows:

εm ¼ 1

Lþ 1

 XL
j¼0

fðN 1½CðξjÞ;UðξjÞ�Þ2 þ ðN 2½CðξjÞ;UðξjÞ�Þ2g
!

ð49Þ

where Lþ 1 = equally distributed discrete points. It was proven in
a general way that as the square residual error tends to zero, the
homotopy series converges to the solution of the original problem.
Therefore, it is sufficient to check the residual error Eq. (49) only. A
test case performed to show the behavior of the square residual
error εm with the order of approximation of HAM-based solution
is plotted in Fig. 2, where the optimum values of convergence con-
trol parameters are found as h1 ¼ −0.692264, h2 ¼ −3.53594, and
λ ¼ 2.86625. It can be observed from the figure that as the order of
approximation m increases, total error of the system decreases
systematically, which reveals the suitability of the chosen operators
and approximations and hence the convergence behavior of the
method.

Now, the HAM-based approximate analytical solutions are
verified with the numerical solution. To obtain the numerical sol-
ution of the system, NDSolve of Mathematica version 11.0 is used,
and a suitable set of the required parameters needed to assess the
models is chosen. The function NDSolve contains many numerical
methods, with the most suitable one automatically chosen by the
software. Fig. 3 compares the numerical solution at some discrete
points with the 30th-order HAM-based approximation. The
convergence control parameters are determined from the method
described in the preceding section. It can be observed from the
figure that the analytic approximate solutions are closer to the
numerical ones. Apart from the graphical solutions, the quantitative
assessment is given in Table 1 for some discrete points of the
domain, which ensures the stability of the proposed method.

Physical Interpretation of the Model

Neutral and Stratified Eddy Viscosity Profile
Eddy viscosity profile given by Eq. (5) is plotted in Fig. 4 for both
the neutral and stratified cases. The magnitude of the correction
factor ð1 − βRfÞ is less than unity, which damps the eddy viscosity
for sediment-laden flow in comparison with that of clear-water
flow. Near the channel bed and water surface, the flux Richardson

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

HAM Based Solution

Numerical Solution

10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

HAM Based Solution

Numerical Solution

(a) (b)

Fig. 3. Comparison of the 30th-order HAM-based approximation with numerical solution: (a) concentration profile; and (b) velocity profile.
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Fig. 2. Residual error [Eq. (49)] εm versus the order of approximationm.
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number Rf takes on very small values, leading to negligible change
in the relevant stratified profile.

Effect of Stratification on Fluid Velocity and Sediment
Concentration
Comparison of sediment concentration and fluid velocity profiles
for stratified and neutral flow is depicted in Fig. 5. The continuous
line stands for β ¼ 0, i.e., without stratification, and the dotted line
stands for β ¼ 4, i.e., with stratification. The other required param-
eters are given in the figures. It is known that the stratification effect
dampens the sediment diffusivity; as a consequence, the sediment
concentration decreases. In case of concentration, stratification ef-
fects are prominent in some specific region of the water column.
Because the concentration is very small in the higher region of
the water column, the density difference is not significant and the
stratification effect is almost negligible there. Again, in the near-
bed region, the eddies responsible for transporting momentum are
very small, and therefore the stratification effect is not prominent
there either. It is evident from the figure that the effect of stratifi-
cation is prominent in the intermediate region of the flow. On the

other hand, the decrease of turbulent diffusivity due to stratification
results in increasing velocity, as can be seen from the figure.

Effect of Hindered Settling Mechanism
The effect of the hindered settling mechanism through the exponent
nH on suspended-sediment concentration and fluid velocity profiles
is shown in Fig. 6, where the case nH ¼ 0, i.e., without hindered
settling effect, and case nH ≠ 0, i.e., with hindered settling effect,
are considered. It is well known that the hindered settling effect is
pronounced in highly concentrated flows. To that end, a relevant set
of parameters was chosen and is presented in the figure. It can be
observed from Fig. 6(a) that the concentration difference is visible
in the main flow region because near the water surface, the particle
concentration is too low and in the near-bed region, particles are not
in suspension. On the other hand, the velocity profile is affected by
nH in the upper region of the flow, as can be seen in Fig. 6(b).

Variation of Velocity and Concentration Profiles with
Inverse Schmidt Number
The velocity and concentration profiles for stratified flow with
different inverse Schimdt numbers are plotted in Fig. 7. Five differ-
ent values of α are chosen to assess the profiles. It can be observed
from the figure that both the velocity and concentration values
increase with the increase of α. The increasing pattern for concen-
tration profile becomes convex to concave type, and shifted increas-
ing behavior is observed for velocity. For a certain region of the
flow zone, specifically for ξ ≤ 0.2, both profiles are convergent
in nature. Further, it has been observed that the profiles’ changing
behavior is less sensitive to α in comparison with that of neu-
tral flow.

Comparison with Experimental Data

Finally, the derived profiles are validated with the available exper-
imental data in the literature. The theoretical formulation of the
present work is a generalization of the work of Herrmann and
Madsen (2007). Unlike them, the approach proposed here started
with the Hunt’s diffusion equation, and the settling velocity of a
sediment particle is considered to be a function of sediment con-
centration instead of assuming it to be a constant. Therefore, the
derived models are also valid for highly concentrated flows. For
that purpose, two kinds of experimental data are considered: dilute
flow from Coleman (1981) and nondilute flow from Einstein and
Chien (1955).

Coleman (1981) used a 356-mm-wide and 15-m-long smooth
flume. The flow depth was maintained near about 17.1 cm. Test
cases 1, 21, and 32 out of 40 test cases were performed in
clear-water flow and Test cases 2–20 were performed over a

Table 1. Comparison of the numerical solution with the different orders of approximation of HAM for CðξÞ and UðξÞ

ξ

Numerical solution 30th-order approximately 15th-order approximately 5th-order approximately

CðξÞ UðξÞ CðξÞ UðξÞ CðξÞ UðξÞ CðξÞ UðξÞ
0.0350 1 14.6300 1 14.6300 1 14.6300 1 14.6300
0.1305 0.297256 18.6708 0.297252 18.6708 0.296968 18.6703 0.296939 18.5995
0.2260 0.162356 20.4095 0.162354 20.4094 0.161691 20.4055 0.140884 20.3356
0.3215 0.103640 21.5387 0.103638 21.5387 0.102843 21.5295 0.082491 21.4403
0.4170 0.070437 22.3784 0.070432 22.3783 0.069536 22.3616 0.054012 22.2402
0.5125 0.048938 23.0481 0.048951 23.0477 0.048096 23.0211 0.035671 22.8647
0.6080 0.033798 23.6057 0.033945 23.6051 0.033366 23.5659 0.021806 23.3783
0.7035 0.022498 24.0840 0.023115 24.0839 0.023048 24.0298 0.012198 23.8169
0.7990 0.013689 24.5033 0.015448 24.5079 0.001599 24.4302 0.008674 24.2014
0.8945 0.006573 24.8771 0.010499 24.9008 0.011528 24.8022 0.013216 24.5440
0.9900 0.000593 25.2157 0.007946 25.2016 0.009137 25.1550 0.026559 24.8516

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Stratified viscosity

Neutral viscosity

Fig. 4. Neutral and stratified eddy viscosity profile along a vertical.
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sediment bed with three different sand diameters d ¼ 0.105,
d ¼ 0.21, and d ¼ 0.42mm. In contrast, Einstein and Chien (1955)
performed experiments very close to the channel bed and reported
16 different measurement runs, named Run S1 to S16 for three
different particle diameters of 1.3, 0.940, and 0.274 mm.

It can be observed that to determine the velocity and concentra-
tion profiles, several parameters, such as clear-water settling veloc-
ity ω0, inverse Schmidt number α, and exponent of reduction of fall

velocity nH, need to be calculated. For that purpose, ω0 is computed
from the well-known expression given by Cheng (1997) as follows:

ω0 ¼
νf
d
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 1.2d2�

q
− 5Þ1.5 ð50Þ

where νf = kinematic viscosity of clear fluid; and d� =
dimensionless particle diameter defined by d� ¼ ðΔg=ν2fÞ1=3d,

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

With stratification 0

Without stratification 0

10 15 20 25 30
0.0
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0.4

0.6

0.8

1.0

With stratification 0

Without stratification 0

(a) (b)

Fig. 5. Profiles for stratified and the neutral flow: (a) concentration profile; and (b) velocity profile. Dashed line represents stratified with
½α;β� ¼ ½0.55; 4�, and solid line represents neutral with ½α; β� ¼ ½0.55; 0�.
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Fig. 6. Effect of nH on the models: (a) concentration profile; and (b) velocity profile.
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where d is the particle diameter. On the other hand, the
literature on the expression of α is limited (Rijn 1984; Pal and
Ghoshal 2016a). The expression was selected from a recent
study by Pal and Ghoshal (2016a), who showed that α values
depend on the reference level and reference concentration
along with the normalized settling velocity. By analyzing a
wide range of experimental data, they developed the following
expressions:

α ¼

8><
>:

0.033
	ω0

u�



0.931

ξ−1.196a c−0.118a for dilute flows

2.204
	ω0

u�



0.667

ξ0.178a c0.017a for nondilute flows
ð51Þ

The exponent nH depends mainly on the particle Reynolds num-
ber (Richarson and Zaki 1954; Chien and Wan 1999; Garside and
Al-Dibouni 1977). There are many formulas available for the

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40 45
0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

Fig. 7. Variation of the models for different values of α: (a) concentration profile; and (b) velocity profile.
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Present model with fitting

Present model without fitting

Present model with fitting one parameter

Experimental data
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0.5

Present model without fitting

Present model with fitting one
parameter

Experimental Data

Present model with fitting

(a) (b)

Fig. 8. Comparison of derived models with Run 35 of Coleman (1981) : (a) concentration profile; and (b) velocity profile. Continuous line stands for
the present model with both α and β as fitting parameters, dotted line represents the models with one parameter fixed and the other varying (α ¼ 4.23
and β ¼ 4), dashed line stands for the present model without fitting procedure, and the dots stand for the experimental data.
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expression of nH . The present study uses the formula given by
Richarson and Zaki (1954) as follows:

nH ¼

8>>>>><
>>>>>:

4.65 when Rep < 0.2

4.4Re−0.03p when 0.2 < Rep < 1

4.4Re−0.1p when 1 < Rep < 500

2.4 when 500 < Rep

ð52Þ

in which Rep ¼ ω0d=νf .

Two different runs, namely Run 35 of Coleman (1981) and Run
S12 of Einstein and Chien (1955), were chosen for comparison of
the present models. In Figs. 8 and 9, the derived models are con-
sidered for three cases: (1) fixed β ¼ 4 and α given by Eq. (51),
(2) one parameter fixed and the other varying, and (3) fitting both α
and β with the data. Because in the experimental data of Coleman
(1981), the dip phenomenon was observed, which comes due to the
wake and secondary current effects, and the proposed model does
not incorporate these effects, velocity data up to 50% of the flow
depth, i.e., ξ ≤ 0.5, were considered.

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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Present model with fitting

Present model without fitting

Present model with fitting one parameter

Experimental data
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Present model without fitting

Present model with fitting one
parameter

Experimental Data

Present model with fitting

(a) (b)

Fig. 9. Comparison of derived models with Run S12 of Einstein and Chien (1955): (a) concentration profile; and (b) velocity profile. Continuous line
stands for the present model with both α and β as fitting parameters, dotted line represents the models with one parameter fixed and the other varying
(α ¼ 0.5056 and β ¼ 13.01), dashed line stands for the present model without fitting procedure, and the dots stand for the experimental data.
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Fig. 10. Comparison of derived models with Run 13 of Coleman (1981): (a) concentration profile; and (b) velocity profile. Continuous line stands for
the present model with α and β as fitting parameters, and the dots stand for the experimental data.
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It can be observed from the figures that the models do not match
the experimental data well when α and β are not fitted. On the other
hand, if one parameter is fitted (α in Fig. 8 and β in Fig. 9) and
other one is kept fixed (β in Fig. 8 and α in Fig. 9), then either
velocity or concentration can be matched, but not both. Models
are found to match best with the experimental data only when α
and β both are taken as best-fitted parameters. A similar approach
of fitting was also done by Herrmann and Madsen (2007). This may
be due to the fact that the value of β taken to be equal to 4 in this

work is not universal but rather may vary with data, and no expres-
sion of α is available in the literature that incorporates the strati-
fication effect, including the work on α considered in the present
study. Therefore, it may be natural that the velocity and concentra-
tion profiles are influenced by α and β together.

Apart from the aforementioned runs considering α and β as fit-
ting parameters, the present models were validated with the exper-
imental Runs 13 and 23 of Coleman (1981) and Runs S1 and S9 of
Einstein and Chien (1955), as shown in Figs. 10–13. Required
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Fig. 11. Comparison of derived models with Run 23 of Coleman (1981): (a) concentration profile; and (b) velocity profile. Continuous line stands for
the present model with α and β as fitting parameters, and the dots stand for the experimental data.
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Fig. 12. Comparison of derived models with Run S1 of Einstein and Chien (1955): (a) concentration profile; and (b) velocity profile. Continuous line
stands for the present model with α and β as fitting parameters, and the dots stand for the experimental data.

© ASCE 04019090-11 J. Eng. Mech.

 J. Eng. Mech., 2019, 145(11): 04019090 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

In
di

an
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
K

ha
ra

gp
ur

 o
n 

09
/1

3/
19

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



parameters for assessing the models are reported in Table 2. It can
be observed from the figures that the derived equations mimic the
data well throughout the flow depth considered. As mentioned pre-
viously, the present model is applicable for nondilute flows also,
and so it works well for the data of Einstein and Chien (1955).

Conclusions

The following conclusions can be drawn from the present work:
• This study modeled streamwise fluid velocity and suspended-

sediment concentration distributions simultaneously along a
vertical in a turbulent flow laden with sediment incorporating
the effects of stratification and hindered settling, which is a gen-
eralization of the work of Herrmann and Madsen (2007). The
theoretical formulation leads to a system of strongly nonlinear
coupled odes, which has been solved to find an explicit series
solution using HAM.

• In HAM, the convergence of the series depends on some
auxiliary parameters, commonly called convergence control para-
meters. Those parameters monitor and control the convergency of
the solutions. In the present study, three such parameters played

this role, and they were determined through the averaged squared
residual error of the system.

• The effects of stratification through stratification correction
parameter (β), the hindered settling mechanism through the
exponent of the reduction in settling velocity (nH), and inverse
Schmidt number (α) on the vertical distribution of velocity and
concentration have been shown graphically as well as through
discussion. It was found that the stratification effect leads to a
decrease in concentration profile and increase in velocity profile
compared with the neutral flow. On the other hand, as the
inverse Schmidt number increases, the magnitude of velocity
and concentration increase.

• The HAM-based approximate series solution has been validated
with the numerical solution as well as with laboratory experi-
mental data. Data for both dilute and nondilute flow have been
considered, and the model shows good agreement with the
observed values for both the cases when α and β are treated
as fitting parameters. This finding is consistent with the results
of Herrmann and Madsen (2007).

• Overall, the study has shown the potential of HAM in the con-
text of dealing strong nonlinear problems in the area of sediment
transport. Therefore, the applicability of the methodology in the
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Fig. 13. Comparison of derived models with Run S9 of Einstein and Chien (1955): (a) concentration profile; and (b) velocity profile. Continuous line
stands for the present model with α and β as fitting parameters, and the dots stand for the experimental data.

Table 2. Summary of experimental data

Data source Run ξa ca Uðξ ¼ ξaÞ ω0 (cm=s) u� (cm=s) d (cm) h (cm) nH

α β

With
fitting

Without
fitting

With
fitting

Without
fitting

Coleman (1981) 13 0.035 0.0140 14.63 0.6623 4.10 0.0105 17.1 4.45 0.81 0.5512 6.25 4
23 0.035 0.0021 17.49 2.0800 4.10 0.0210 17.0 3.79 1.85 2.0020 2.23 4
35 0.035 0.00093 16.78 5.0545 4.10 0.0420 17.2 3.24 4.08 5.0367 3.05 4

Einstein
and Chien (1955)

S1 0.040 0.02189 9.20 13.5146 11.47 0.130 13.8 2.62 2.29 1.2992 8.98 4
S9 0.045 0.06528 10.20 10.6225 11.85 0.094 13.5 2.78 1.76 1.0824 14.58 4

S12 0.030 0.07721 10.09 3.0201 10.09 0.0274 13.2 3.56 0.75 0.5056 8.96 4
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respective area is beyond doubt, and interested readers may
extend it to explore other kinds of problems in this area.

Appendix I. Homotopy Derivative of General
Function

Following Liao (2012), the proof of the closed form obtained in
Eq. (45) is given in the following:

Theorem 1: Define an operator

D̂mΦ ¼ 1

m!

∂mΦ
∂qm

For a smooth function f ∈ C∞ða; bÞ and a homotopy-Maclaurin
series

Φ ¼
X∞
k¼0

Φkqk

it holds that

D̂0½fðΦÞ� ¼ fðΦÞ ð53Þ

D̂m½fðΦÞ� ¼
Xm−1

k¼0

�
1 − k

m

�
D̂m−kðΦÞ

∂
∂Φ fD̂k½fðΦÞ�g ð54Þ

and

Dm½fðΦÞ� ¼ fD̂m½fðΦÞ�gjq¼0 ð55Þ

Proof: It is easy to check that D̂0½fðΦÞ� ¼ fðΦÞ. In case of
m ≥ 1, applying Leibnitz’s rule for derivative of the product,
one obtains

D̂m½fðΦÞ� ¼
1

m!

∂mfðΦÞ
∂qm ¼ 1

m!

∂m−1
∂qm−1

�∂Φ
∂q

∂fðΦÞ
∂q

�

¼ 1

m!

Xm−1

k¼0

ðm − 1Þ!
k!ðm − 1 − kÞ!

∂m−1−k
∂qm−1−k

�∂Φ
∂q
� ∂k

∂qm
�∂fðΦÞ

∂Φ
�

¼
Xm−1

k¼0

m − k
m

�
1

ðm − kÞ!
∂m−kΦ
∂qm−k

��
1

k!
∂k

∂qk
�∂fðΦÞ

∂Φ
��

¼
Xm−1

k¼0

�
1 − k

m

�
D̂m−kðΦÞD̂k

�∂fðΦÞ
∂Φ

�
ð56Þ

Because D̂k½∂fðΦÞ=∂Φ� ¼ ð∂=∂ΦÞfD̂k½fðΦÞ�g holds, one
can get

D̂m½fðΦÞ� ¼
Xm−1

k¼0

�
1 − k

m

�
D̂m−kðΦÞ

∂
∂Φ fD̂k½fðΦÞ�g for m ≥ 1

Then, according to the definition of D̂m, it obviously holds
that Dm½fðΦÞ� ¼ fD̂m½fðΦÞ�gjq¼0.

Appendix II. Convergence Theorems

Recalling the theorems given in Liao (2012), the theoretical con-
vergence analysis is done as follows:

Theorem 2: If the homotopy series
P∞

m¼0 yi;mðξÞ andP∞
m¼0 y

0
i;mðξÞ converge, then Ri;mð~yi;m−1Þ defined by the relation

Eq. (30) satisfies
P∞

m¼1 Ri;mð~yi;m−1Þ ¼ 0.

Proof: The auxiliary linear operator is defined as follows:

Li½yi� ¼ ξ
dyi
dξ

ð57Þ

According to Eq. (27), one obtains

Li½yi;1� ¼ hiRi;1ð~yi;0Þ ð58Þ

Li½yi;2 − yi;1� ¼ hiRi;2ð~yi;1Þ ð59Þ

Li½yi;3 − yi;2� ¼ hiRi;3ð~yi;2Þ ð60Þ

..

. ð61Þ

Li½yi;m − yi;m−1� ¼ hiRi;mð~yi;m−1Þ ð62Þ

Adding all the preceding terms yields

Li½yi;m� ¼ hi
Xm
k¼1

Ri;kð~yi;k−1Þ ð63Þ

Because the series
P∞

m¼0 yi;mðξÞ and
P∞

m¼0 y
0
i;mðξÞ converge,

lim
m→∞yi;mðξÞ ¼ 0 and lim

m→∞y 0
i;mðξÞ ¼ 0. Now, recalling the afore-

mentioned summand and taking the limit, the required result is

hi
X∞
k¼1

Ri;kð~yi;k−1Þ ¼ lim
m→∞hi

Xm
k¼1

Ri;kð~yi;k−1Þ

¼ lim
m→∞Li½yi;m� ¼ lim

m→∞ξy 0
i;m ¼ 0 ð64Þ

Theorem 3: As long as the series

yiðξÞ ¼ yi;0ðξÞ þ
X∞
m¼1

yi;mðξÞ

converge, where the values of yi;m is governed by Eqs. (41) and
(42), they must be solutions of original system of governing
equations Eqs. (12) and (13).

Proof: From Theorem 2

X∞
m¼1

Ri;mð~yi;m−1Þ ¼ 0 ð65Þ

According to the definition of Ri;mð~yi;m−1Þ given by Eq. (30)

X∞
m¼1

Ri;mð~yi;m−1Þ ¼
X∞
m¼1

1

ðm − 1Þ!
∂m−1N i½Φiðξ; qÞ�

∂qm−1

����
q¼0

¼
X∞
m¼0

1

m!

∂mN i½Φiðξ; qÞ�
∂qm

����
q¼0

ð66Þ

Suppose εiðξ; qÞ ¼ N i½Φiðξ; qÞ� denotes the residual error of
the system Eqs. (12) and (13). Clearly, εiðξ; qÞ ¼ 0 corresponds
to the exact solutions of the original system of equations Eqs. (12)
and (13). Now, expanding εiðξ; qÞ in Maclaurin’s series about the
embedding parameter q, one has

εiðξ; qÞ ¼
X∞
m¼0

qm

m!

∂mεiðξ; qÞ
∂qm

����
q¼0

¼
X∞
m¼0

qm

m!

∂mN i½Φiðξ; qÞ�
∂qm

����
q¼0

ð67Þ

Using Eqs. (66) and (65), at q ¼ 1, the preceding expression
becomes
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εiðξ; 1Þ ¼
X∞
m¼0

1

m!

∂mN i½Φiðξ; qÞ�
∂qm

����
q¼0

¼ 0 ð68Þ

This means that the exact solutions of the original system of
equations Eqs. (12) and (13) are obtained when q ¼ 1. Therefore,
as long as the series

yiðξÞ ¼ yi;0ðξÞ þ
X∞
m¼1

yi;mðξÞ

converges, they must be the solutions of the original system of
governing equations Eqs. (12) and (13).
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