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Abstract
This paper aims to solve the one-dimensional unsteady suspended sediment transport equation in
open channels through a semi-analytical approach. The presence of a large amount of particles in
flow change the settling velocity of a particle, and this phenomenon, commonly known as
hindered settling effect, must be taken into account to deal with high concentrated flows.
Inclusion of this mechanism makes the governing equation nonlinear, and together with this
nonlinear governing equation, a generalized bottom boundary condition is taken in terms of
deposition velocity and equilibrium bottom concentration. An explicit series solution is
presented using the method of lines based homotopy analysis method, and the convergence of
the series solution is gained through a convergence control parameter. The solution is validated
by comparing it with the existing solution as well as a numerical one. Apart from that, the
solution has also been validated under a steady-state condition with available experimental data.
Results are interpreted both graphically and physically. It is found that the hindered settling
effect is dominant in the main flow region only, for sediment free inlet for all types of turbulent
diffusion coefficients. On the other hand, in the case of uniform sediment concentration at the
inlet, hindered settling affects the concentration in the top portion of the channel too for linear
and parabolic profiles of turbulent diffusion coefficients.

Keywords: open channel flow, diffusion equation, homotopy analysis method, hindered settling
mechanism

(Some figures may appear in colour only in the online journal)

Nomenclature

c =volumetric sediment concentration (−)

ca =reference sediment concentration (−)

a =reference level above the bed (m)

h =channel depth (m)

c*, γ =depth independent parameters (−)

u* =shear velocity (m s−1)

ωs =settling velocity of sediment particle
(m s−1)

ω0 =settling velocity in clear fluid (m s−1)

κ =von Karman constant (−)

òs, òt =sediment and turbulent diffusivity, respec-
tively (m2 s−1)
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β =ratio between turbulent diffusivity to
sediment diffusivity (−)

t =time (s)

x, y, z =longitudinal, transverse and vertical coor-
dinates, respectively (m)

u, v, w =velocities along x, y and z directions,
respectively (m s−1)

òm =molecular diffusion coefficient (m2 s−1)

òsx, òsy, òsz =sediment diffusion coefficients along x, y
and z directions, respectively (m2 s−1)

nH =exponent reduction constant (−)

α1, α2 =constant (−)

C, C*, Z, T, A,
B, V0

=dimensionless parameters (−)

N =number of interior node points (−)

1. Introduction

The study of transportation of sediment in turbulent flow
through an open channel is an important topic of concern to
the researchers as it resembles river flow in a practical
situation. Numerous models have been developed to describe
the distribution of sediment in the suspension. However, the
majority of the models deal with one-dimensional (vertical)
steady concentration only [1–10], which may not be the case
practically. The steady 1D models are governed by the
ordinary differential equations (ODE) and hence easy to
handle both numerically and analytically. But when the var-
iation of concentration is considered in vertical as well as in
the main flow direction, or vertical concentration is con-
sidered to vary with time, the governing equation becomes a
partial differential equation (PDE), which is not always easy
to tackle. Hjelmfelt and Lenau [11] studied the non-equili-
brium transport of suspended sediment analytically, and the
formulated problem was solved by the method of separating
variables. However, the boundary conditions employed in
their study had constraints as they did not consider any
deposition or entrainment flux. Much early to this work,
Monin [12] and Calder [13] proposed a near-bed boundary
condition where the deposition was considered, and entrain-
ment was ignored. Dobbins [14] considered both entrainment
and deposition, but in his work, entrainment rate and
deposition flux both were constant and related to settling
velocity, which was an unnecessary constraint on the near-
bed boundary condition. Cheng [15] generalized the bottom
boundary condition for non-equilibrium transport of sediment
considering both entrainment and deposition by introducing a
parameter γ. With this boundary condition, Liu and Laya-
matullah [16] solved the one-dimensional unsteady transport
equation with arbitrary eddy viscosity using general integral
transform technique. Later, Liu [17] studied the two-dimen-
sional transport of sediment with the same boundary condi-
tion and methodology.

All the works mentioned above considered the governing
equation as a linear PDE and neglected an important physical
phenomenon called hindered settling mechanism inclusion of
which would have made the governing equation nonlinear.
Long back, it has been proved by Richarson and Zaki [18]
that the presence of sediment particles in flow affects the
particle settling velocity, and it must be taken into account
when dealing flow with high concentration. Recently, Jing
et al [19] considered this effect in their two-dimensional
concentration equation, but they did not provide any analy-
tical solution to the problem. To tackle a mathematical pro-
blem, two approaches can be adopted: (i) numerical and (ii)
analytical/semi-analytical. Both of them have their own
merits and demerits. The numerical method is a trial and error
procedure that produces an approximation to the true solution
(s), whereas the analytical/semi-analytical solution provides
answers to a whole set of problems. Also, numerical
approaches do not give deep insight into the problem, but
analytic methods can. Checking a numerical solution is dif-
ficult, and most of the time, the source code is not error-free.
On the other hand, analytical solutions can contribute to
proofs of new ideas. Both approaches contribute holistically
to the field of science and mathematics, and both are equally
important. Looking at the merits of analytical/semi-analytical
approach, the present study aims to solve the problem by a
semi-analytical approach. Liao [20] originated a method
known as the homotopy analysis method (HAM), which can
be successfully applied for solving nonlinear ordinary/partial
differential equations analytically. The method has been
widely applied to solve nonlinear differential equations in
different areas of science and engineering [21–26], but its
applicability to open channel flow in general and sediment
transport in particular remains unexplored except a few works
[10, 27, 28]. So the present work aims to derive an approx-
imate analytical solution of the one-dimensional unsteady
advection-diffusion equation considering the generalized
bottom boundary condition given by Cheng [15] together
with the effect of hindered settling which makes the gov-
erning equation nonlinear. As the direct solution of the PDE
using HAM creates some mathematical difficulty which will
be discussed in the paper, the PDE is solved by the method of
lines (MOLs) based HAM, where the PDE is first converted
into a system of ODEs through a semi-discretization techni-
que, and then the HAM is used to solve the system. The
obtained results have been compared with the existing similar
type of work, and physical justification has been provided.

2. Problem formulation

2.1. Governing equation

The transport process of suspended sediment is governed by
the advection-diffusion equation. The most generalized form
of the three-dimensional advection-diffusion equation of
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suspended sediment motion is given as follows [29]:
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where t denotes time, c is the volumetric sediment con-
centration, x, y, and z are the longitudinal, transverse, and
vertical directions, respectively; u, v, w represent the time-
averaged velocity components in three directions, òsx, òsy, òsz
are the sediment diffusion coefficients in x, y, z directions,
respectively and òm is the molecular diffusion coefficient. In
turbulent flow, the molecular diffusion coefficient òm is neg-
ligible as compared to the sediment diffusion, i.e. òm≈0.
Replacing the vertical velocity component w by the down-
ward settling velocity −ωs of sediment, the governing
equation for one-dimensional unsteady, uniform flow in a
wide channel becomes
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In literature, it is observed that the magnitude of the settling
velocity ωs of sediment particles is less than that in clear fluid
due to the presence of the surrounding particles. The rela-
tionship between ωs and c, according to Richarson and Zaki
[18], is given as follows:

( ) ( )w w= - c1 , 3s
n

0 H

where nH is the exponent of reduction in settling velocity, and
ω0 is the settling velocity in clear fluid. The exponent nH
depends on the particle Reynolds number and varies between
2.3 and 4.9 [18]. However, for mathematical convenience,
one can consider an average value, nH=4 [30]. The present
study also assumes the same. Therefore, substituting
equation (3) into equation (2) and denoting the sediment
diffusivity òsz in the vertical direction z by òs, the governing
equation for the suspended sediment concentration becomes:
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2.2. Boundary conditions

The suspension of sediment particles occurs from a particular
reference level z=a to the free surface z=h. At the free
surface, z=h, no mass transfer takes place, and hence zero
flux can be specified thereat. The boundary condition at the
free surface is given as

( )w
¶
¶

+ = = c

z
c z h0 at . 5s s

Different kinds of boundary conditions can be prescribed at
the reference level z=a [11, 31, 32]. Considering the flux to
be equal to the rate of placing the sediment into suspension,

Cheng [15] proposed a generalized boundary condition which
reads as follows

( ) ( )w g
¶
¶

+ = - = c

z
c c c z aat . 6s s *

All the other boundary conditions are special cases of
equation (6). Here, γ is a parameter whose value depends on
thebottom boundary condition, and c* is the equilibrium
concentration at the bottom surface. From a physical point of
view, γ is considered to be a reflectivity coefficient of the
bottom surface, e.g. γ=0 represents a perfectly reflective
surface, and g = ¥ corresponds to a perfectly absorbing
surface [15, 17]. An ideal condition lies in between these
values.

At the inlet, the concentration profile can be taken arbi-
trary and has the following form

( ) ( ) ( )= =c t z c z0, . 70

The governing equation (4) is non-dimensionalized as
follows:
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where ca is the reference concentration at reference height
z=a, u* is the shear velocity, h is the maximum flow depth,
and β is the ratio of turbulent diffusivity òt to sediment dif-
fusivity òs. Accordingly, the dimensionless form of
equation (4) becomes:
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Researchers [9, 33] have shown that the effect of the hindered
settling mechanism is dominant only in the main flow region
and is negligible at the water surface or near the channel
bottom. Therefore, considering ωs=ω0 at the bottom
boundaryand performing non-dimensionalization, the
boundary and initial conditions become:

( ) ( )¶
¶

+ = =K Z
C

Z
V C Z0 at 1 90

( ) ( ) ( )¶
¶

+ - = - =K Z
C

Z
V B C BC Z Aat 100 *

and

( ) ( ) ( )= =C T Z C Z0, 110

Two cases can be considered for C0(Z): (a) the inlet is clear
water with no sediment, i.e. C0(Z)=0 and (b) there is uni-
form sediment concentration at the inlet, i.e. C0(Z)=1.

It can be noticed that equation (8) is a highly nonlinear
PDE together with non-homogeneous BCs equations (9), (10)
and the IC equation (11). Also that the PDE has nonlinearity
in power with a variable coefficient, and as such, the analy-
tical solution is a challenging task. We attempt to find an
approximate analytical solution of the PDE using a unified
non-perturbation method, known as the HAM, in combination
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with some other mathematical tools. The detailed solution
procedure is described below.

3. Solution procedure

In literature, several analytical techniques are available which
deal with nonlinear ODE/PDEs, such as classical perturba-
tion method [34], Lyapunov’s artificial small parameter
method [35], δ-expansion method [36], and Adomian’s
decomposition method [37]. These techniques essentially
convert the original nonlinear equation into an infinite system
of linear equationsand then approximate the solutionconsi-
dering the sum of solutions of the first few linear equations.
However, the region and rate of convergence in these tech-
niques cannot be adjusted properly. Also, few of the methods
stop working if small parameters (often called perturbation
quantity) are not present in the governing equation or
boundary conditions and also are not valid for strongly non-
linear problems. Interestingly, these shortcomings have
shown to be overcome using a novel analytical method called
the HAM proposed by Liao [20]. The basic idea of the
method is first to choose an appropriate set of base functions
to represent the solution, and then accordingly, a proper set of
a linear operator, initial approximation, and auxiliary function
is constructed. The convergence of the series solution
obtained by HAM strongly depends on the choice of initial
approximation [38]. However, in the present case of PDE
equation (8) together with the BCs and IC equations (9)–(11),
it is not easy to choose such operators and the initial
approximation. The non-homogeneous nature of the boundary
condition and difficulty in choosing an appropriate set of base
functions make the task difficult. Liao [39] showed that it is
easy to apply HAM to the ODE as compared to the partial
differential equations. Therefore, first, we aim to convert the
PDE into a system of nonlinear ODEs through semi-dis-
cretization technique, which is described below.

3.1. MOLs-HAM

In the MOLs approach, the boundary value derivatives (also
known as spatial derivatives in space-time problem) present
in the PDE are discretized by algebraic approximations using
finite difference or finite volume or finite element methods
and hence the given PDE reduces into a system of ODEs.
This method is a well-known semi-analytical approach for
solving complex PDEs [40]. So, one can convert a PDE into a
coupled system of ODEs by MOL using finite difference
approximations for the independent boundary value variable.
Using the second-order central finite difference approx-
imation for the derivatives with respect to Z, i.e.
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where i(=1, 2, K, N) is the node point, D =
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distance between two node points, N is the total number of
interior node points, and L is the length of the domain.
Clearly, Z=A and Z=1 correspond to the nodes i=0 and
i=N+1, respectively, and Zi=A+iΔZ. Using the sec-
ond-order backward finite difference approximation for
Eq. (9) and second-order forward finite difference approx-
imation for Eq. (10), the boundary conditions reduce to:
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One can obtain the values of CN+1 and C0 from
equations (13) and (14), respectively, such as
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with N number of unknowns C1, C2,...,CN is obtained as
follows:
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where C0 and CN+1 can be estimated using the expressions
mentioned earlier. Finally, one has a coupled system of N
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ODEs given by equations (15)–(17) subject to the initial
conditions Ci (T=0)=C0(Z).

To apply HAM, one can write the system of nonlinear
ODEs given by equations (15)–(17) in the following form
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where i are the linear operators with the property that
[ ] = f 0i when f=0, Hi(T) are the non-zero auxiliary

functions, ÿi are the non-zero convergence-control para-
meters, Ci,0(T) are the initial approximations of Ci(T), Φi(T; q)
are unknown functions and i are the nonlinear operators
defined by equation (18). Equation (20) is known as the
zeroth-order deformation equation. It is clear from
equation (20) that when q=0, Φi(T; 0)=Ci,0(T) and when
q=1, Φi(T; 1)=Ci(T). So, as the embedding parameter q
increases from 0 to 1, Φi(T; q) continuously varies from the
initial guess Ci,0(T) to the final solution Ci(T). Fortunately, in
the framework of HAM, one has great flexibility to choose the
initial guess Ci,0(T), the auxiliary linear operators i, and the
auxiliary function Hi(T). However, this freedom is in accor-
dance with Liao’s rule of solution expression and rule of
coefficient ergodicity [41]. Now expanding Φi(T; q) by
Maclaurin series with respect to the embedding parameter q,
we have
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m are known as mth order deformation deriva-

tives. Suppose that i, ÿi, Hi(T) and Ci,0(T) are chosen in such
a way that the series equation (21) converges at q=1; then
the series becomes:
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Differentiating zeroth-order deformation equation m times
with respect to q, and setting q=0, and then dividing by m!,
the higher order approximations Ci, m(T) for m�1 can be
obtained as follows:
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Equation (24) is known as the mth order deformation
equation. The approximate solution of equation (18) can be
obtained by considering up to a finite number of terms of
equation (23) as follows:

( ) ( ) ( ) ( )å» +
=

C T C T C T 28i i
m

k

i m,0
1

,

which is known as kth order approximation of HAM.
In the present work, one has a system of N coupled

nonlinear ODEs given by equations (15)–(17) subject to
Ci(0)=C0(Z), i=1, K, N. To solve the system
equations (15)–(17), let us consider the set of base functions
as the polynomials {Tn: n=0, 1,K} to represent the solu-
tions Ci(T) in the form of
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where αnʼs are the coefficients of the series. Keeping the
initial condition and the set of base function in mind, one can
simply choose the initial approximations as Ci,0(T)=C0(Z)
for i=1, 2...,N and the single term auxiliary linear operator
as

[ ( )] ( ) ( )F =
¶F

¶
 T q

T q

T
;

;
. 30i i

i

To avoid computational difficulty, the auxiliary functions are
simply chosen as Hi(T)=1 for i=1, 2,K, N [42].
Accordingly, higher order terms are estimated as

( ) ( ) ( ) ( )òc= +-



-C T C T R C Td . 31i m m i m i

T

i m i m, , 1
0

, , 1

Therefore, the kth order solution can be obtained from
equation (28) where the higher order terms are given by
equation (31).

4. Results and discussion

In this section, first, we define the input parameters which are
required to obtain the solution of equation (8) and then the
derived approximate analytical solution is compared with the
analytical solution provided by Cheng [15] taking constant
turbulent diffusion coefficient K(Z) and also with the num-
erical solution of the problem. After that, transient suspended
sediment concentration profiles with different eddy viscosity
distributions are plotted followed by important discussion on
the hindered settling mechanism and the distribution of bot-
tom sediment concentration.
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4.1. Input function and parameters

To assess the solution of the one-dimensional unsteady sus-
pended sediment transport model, expression for K(Z) is
needed. In literature [43], three types of expressions are
available for turbulent diffusion coefficient K(Z), namely
constant, linear, and parabolic which are given below:

(i) Constant

( ) ( )k
a

=K Z 32
1

(ii) Linear

( ) ( )k
a

=K Z Z 33
2

and (iii) Parabolic

( ) ( ) ( )k= -K Z Z Z1 , 34

where κ is the von-Karman constant whose value is 0.41. The
details of the model parameters α1 and α2 can be found in van
Rijn [43]. Accordingly, the values α1 = 6 and α2 = 3 are
used in this work.

4.2. Validation of the HAM-based solution

The derived HAM based semi-analytical solution is validated
here with the analytical solution of Cheng [15]. Cheng [15]
solved the one-dimensional, unsteady linear diffusion
equation together with the generalized boundary conditions
and constant turbulent diffusion coefficient. Taking V0 = 1
and neglecting the hindered settling effect, i.e. nH = 0, the
model considered in this study reduces to the problem solved
by Cheng [15]. It can be seen from equation (31) that the
series solution is dependent on the auxiliary parameter ÿi = ÿ
whose value needs to be determined to evaluate the solution.
According to Liao [41], an appropriate set of values for the
auxiliary parameters ensures the convergency of the series
solution over the domain. For that purpose, the squared
residual error (Δm) at the mth order approximation can be
calculated as follows:

( ( ) ( )ò åD =
ÎW =

 C C C X, , ..., d . 35m
T i

N

i N
1

1 2
2

Sometimes it is not possible to compute the integration given
in equation (35); so to avoid the difficulty one can proceed
with the discrete form of integration as follows:

⎛
⎝⎜

⎞
⎠⎟( ( ( ) ( ) ( ))) ( )å åD =

+ = =


l

C T C T C T
1

1
, , ..., , 36m

k

l

i

N

i k k N k
0 1

1 2
2

where l + 1 is number of equally distributed node points. It is
shown that as the squared residual error (Δm) tends to 0, the
series solution converges to the exact solution of the problem.
So it is sufficient to deal with the squared residual error for the
convergence of the solution. For that purpose, choosing a
relevant set of parameters and taking N = 9, squared residual
error (Δm) with different order of approximation m is plotted
in figure 1 and the value of optimal convergence control
parameter is found as ÿ= − 0.060 464. It can be seen from
figure 1 that as the order of approximation is increasing, the

squared residual error is decreasing and tending to zero,
which assures the convergence of the solution.

In figure 2, 80th order HAM based series solutions for
C1, C3, C5, C7, and C9 together with the numerical solutions
obtained using dsolve in Maple are plotted, and it is clear
from figure 2 that the series solution matches well with the
numerical one.

Now the derived semi-analytical solution for suspended
sediment transport in open channels is validated with the
analytical solution of Cheng [15] considering the same test
cases, i.e. constant eddy viscosity and nH = 0. For that, 80th
order HAM based solution for N = 9 is computed with dif-
ferent parameter values for B, K, and C*, and the initial
condition C0(Z) = 1. figures 3(a)–(c) plot the vertical sedi-
ment concentration distribution at different times. In
figure 3(d), bottom sediment concentration as a function of
time is plotted for different C* values. All the required
parameter values are mentioned in the figure’s caption. It can
be observed from figure 3 that the solution agrees well with
the solution of Cheng [15].

Figure 1. Squared residual error equation (36) with order of
approximation m.

Figure 2. Comparison of 80th order HAM based analytical solution
with numerical solution for parameters’ values B=1.0, K=0.35,
C*=2.0 and the initial condition C0(Z)=1.
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4.3. Transient suspended sediment concentration distributions

Transient suspended sediment concentration profiles with
different turbulent diffusion coefficients for times
= ¥T 0.4, 1.0, 2.0, and taking initially uniform concentra-

tion profile, i.e. C0(Z)=1without hindered settling effect are
plotted in figure 4. The required parameters are A=0.05,
B=2.0, V0=0.2, and C*=1. Figure 4 shows that in the
beginning, vertical concentration profiles are almost same
except at the top of the channel where the profile corresp-
onding to parabolic diffusivity tends to zero essentially, and
the linear diffusivity based profile deviates more at steady
state in comparison to the others.

4.4. Effect of hindered settling mechanism on concentration
profile

The effect of the hindered settling mechanism is examined in
figure 5 for vertical concentration profile with different tur-
bulent diffusion coefficients together with both the initial
conditions at fixed time T=2. It is clear from the figure that

for sediment free inlet, the hindered settling effect is dominant
in the main flow region only, irrespective of the nature of the
turbulent diffusion coefficient. It happens because, near the
water surface, the concentration of particles is very low while
near the bed region particles do not come in suspension. On
the other hand, in the case of uniform sediment concentration
at the inlet, i.e.C(T=0, Z)=1, it can be observed that
constant and linear profiles are affected by the hindered set-
tling mechanism in the top portion of the channel too. The
reason behind it is that, in case of uniform sediment con-
centration at the inlet, the free surface of the channel has
sufficient particles in the suspension there.

4.5. Bottom sediment concentration profiles

One interesting feature for the 1D suspended sediment
transport is that of overshooting. Cheng [15] showed that
bottom concentration profile overshoots its equilibrium in the
beginning and then slowly decreases to equilibrium. Jobson
and Sayre [44] and Celic and Rodi [45] also observed this
phenomenon in their experiments, and later, Liu and

Figure 3. Comparison of the semi-analytical solution with the analytical solution of [15]: (a) B=1.0, K=0.35, C*=2.0; (b) B=4.0,
K=0.35, C*=2.0; (c) B=1.0, K=0.35, C*=4.0; (d) bottom sediment concentration with different values of C* where B=2.0
and K=0.35.
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Nayamatullah [16] reported the overshooting behavior in their
model. To observe this phenomenon, the bottom sediment
concentration profiles for both the inlet conditions are plotted
in figure 6 with time variation. It can be observed from the
figure that the overshooting happens only when the inlet has
uniform sediment concentration, i.e. C0(Z)=1 for all the
turbulent diffusion coefficients, while it did not occur when
inlet is free of sediment in any case.

4.6. Comparison with experimental data

To the best of the authors’ knowledge, no experimental data
for one-dimensional unsteady suspended sediment transport
problem is available in the literature. However, for vertical
distribution of suspended sediment concentration, many
experimental data are available. As at large time, unsteady
problem behaves like a steady one, we validate our model
with the experimental data for vertical distribution of sus-
pended sediment concentration at a large time. To that pur-
pose, two types of data are taken into account: Coleman [46]
and Einstein and Chien [47]. Coleman [46] performed

experiments by using a 356 mm wide and 15 m long smooth
flume. 40 test cases were performed with three different sand
diameters d=0.105, d=0.21 and d=0.42 mm. While
Einstein and Chien [47] performed 16 different experiments,
named Run S1 to S16 very close to the channel bed with three
different particle diameters of 1.3, 0.940 and 0.274 mm.
Randomly two data sets Run 13 and Run 23 are taken from
Coleman [46] and run S9 and S12 are taken from Einstein and
Chein [47]. Figures 7 and 8 show the comparison between
these data sets and the proposed model. Here we consider the
parabolic diffusion coefficient, and all the values of the
parameters required for the calculation are mentioned within
the figures. The values of shear velocity, reference label and
reference concentration are considered from the respective
data sets. It can be seen from the figures that in all the cases,
the agreement is quite well.

Figure 4. Transient suspended sediment concentration distributions with different turbulent diffusion coefficients with the parameters
A=0.05, B=1.0, V0=0.2 and C*=1.0, and initial condition C(T=0, Z)=C0(Z)=1; (a) T=0.4; (b) T=1.0; (c) T=2.0; (d) T
 ¥.
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5. Conclusions

The present work derives a semi-analytical solution for
unsteady one-dimensional suspended sediment transport
model with arbitrary eddy viscosity profiles together with the

generalized boundary conditions and hindered settling effect.
An explicit series solution based on the MOL based HAM is
obtained for the governing nonlinear PDE representing the
suspended sediment concentration. The proposed methodol-
ogy is found to be an efficient approach which controls the

Figure 5. Effect of hindered settling through nH; (a)–(c) are constant, linear, and parabolic eddy viscosity profiles, respectively, with initial
condition C0(Z)=1, and (d)–(f) are constant, linear, and parabolic eddy viscosity profiles, respectively, with initial condition C0(Z)=0.
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convergence of the series solution through a convergence-
control parameter. Moreover, under certain conditions, the
derived semi-analytical solution agrees well with the pre-
viously obtained analytical solution as well as laboratory data

existing in literature. The behavior of the transient sediment
concentration profiles with uniform inlet concentration is
depicted. The effect of hindered settling mechanism on the
vertical concentration profile is shown for all types of eddy

Figure 6. Bottom sediment concentration profiles with: (a) C0(Z)=0 and (b)–(d) C0(Z)=1.

Figure 7. Comparison of present study with Coleman Data [46]: (a) Run-13 and (b) Run-23.
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viscosity profiles. Also, the overshooting of bottom sediment
concentration is observed when the inlet has uniform sedi-
ment concentration. Finally, the efficient approach proposed
in this study is expected to be extended further for providing
the analytical treatment for complicated problems in fluvial
hydraulics.
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