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Abstract

The existence of a solution to an important singular coagulation equation with a
multiple fragmentation kernel has been recently proved in Jpn J Ind Appl Math
35(3):1283-1302, 2018. This paper proves the uniqueness of the solution to the
same problem in the function space 2 , (T) = Ujs0 22 (T, where £, . (T) is the
space of all continuous functions f'such that

Wl = sup [ (expiao + = )iy < o
0 X2

0<t<T

and0<r, <L

Keywords Coagulation—fragmentation equation - Singular coagulation kernel -
Multiple fragmentation kernel - Uniqueness result
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1 Introduction

This paper continues the analysis on the solutions of a singular coagulation equa-
tion, with a multiple fragmentation, that is considered in [10]. In [10], the exist-
ence of a solution to the problem is proved. In this article, we prove the unique-
ness of the solutions to the problem. The analysis of solutions to the problem
under consideration is important due to the appearance of such problem in the
practical fields. It is noteworthy that the problem that we consider to study
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includes a class of practical kernels, for instances, Smoluchowski kernel (1917)
(in Brownian diffusion kernel) [20], Kapur kernel (1972) (in granulation) [14],
Hounslow equipartition kinetic energy kernel (1998) (in granulation) [13], Shiloh
et al. (1973) (in nonlinear velocity profile) [19], Friedlander kernels (2000) (in
aerosol dynamics), Peglow kernel (2005) (in granulation kernel) [18], Ding
et al. kernel (2006) (in activated sludge flocculation) [6], etc. Broadly, coagu-
lation—fragmentation process appears in many natural science and engineering
problems, for examples, astrophysics, rock fracture, degradation of large polymer
chains, DNA fragmentation, evolution of phytoplank to aggregates, liquid droplet
break up or break up of solid drugs in organisms, etc.

Coagulation-and-fragmentation process is a particulate process which
describes the time evolution of a system in which clusters react to coagulate or
break. This process has been first studied by Smoluchowski [20]. It concerns
about Brownian motion. The model involves an infinite set of nonlinear differen-
tial equation. After that, Muller [16] introduced its continuous version. Melzak
[15] derived the coagulation—fragmentation equation (C-F equation) which is
formulated as follows:

oA
a2

—f(x,t)/ K(x,y) f(y, ) dy (1.1
0

/ K(x =y, y) f(x =y, 0f (v, 1) dy
0

—f(x,t)/ )Xcr(x,y)dy+/ I'(y,x)f (y, 1) dy
0 X

with the initial condition f(x,0) = f,(x) > 0. In this equation, the function S(x),
known as the selection function, gives the rate of breaking of x-size particles. The
precise interrelations between the fragmentation kernel I'(x,y), the breakage func-
tion b(x, y) and S(x) is given by

I'(xy) =b(x,y) S and Sx) = / )Xcm,y) dy.
0

With the help of these two relations, the Eq. (1.1) reduces to

o 1 ]
o 2

— fn) /O Ky (v, 1) dy

/ K(x =y, 2Wf(x—y,0fy,0dy
0

(1.2)
+ / b(x, S (v, 1) dy — S()f (x, 1)
with the initial data f(x, 0) = f,(x).

In this paper, we consider to investigate the uniqueness of the solution to the
Eq. (1.2). For a detailed interpretation of the terms in (1.2), we refer to [10].
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Uniqueness of solutions for the C-F equation with singular kernel

1.1 Literature survey

In this section, we report the existing studies on the existence and uniqueness of the
solutions to the equations those are analogous or a variant of the Eq. (1.2) with various
types of kernels.

Costa [5] derived the existence and uniqueness result for the discrete C-F equation
by considering the kernel in the following form:

h(r)
4 <K G0 a e (2, 1] and Y j'b;, ;> K (uyr .
=1

In the simplest case of the continuous C—F equation (1.2), i.e., for constant coag-
ulation and fragmentation kernels, Aizenman and Bak [1] showed the unique-
ness of the solution to (1.2), the so-called Boltzman equation, in the space
{f 1 10,00) = R : ||If]l] < oo}, where ||[f1I| = [y~ (1 +)|f(x)]ddx.

Melzak [15] has considered C-F equation and have shown that the unique solution
exist under the following restrictions:

(i) 0 < K(x,y) < 1), a constant, and
(i) 0 < F(x,y) < 7, a constant, /Ox yF(x,y) < x, and fox F(x,y)dy < o0.

The global existence and uniqueness of the solution to the binary coagulation and frag-
mentation equation with linear coagulation kernel and unbounded fragmentation ker-
nel has been given in [7].

Norris [17] has shown existence of a unique solution to the problem (1.2) when the
coagulation kernel satisfies K(x, y) < w(x)y(y) for all x > 0,y > 0 and continuous sub-
linear function y : (0, o0) — (0, 00). In [2], Banasiak studied a fragmentation model,
i.e., in the absence of the coagulation terms in (1.2) and described that the existence of
multiple solutions.

Galkin and Dubovskii [9] reported the existence and uniqueness of solutions to a
coagulation equation with a symmetric nonnegative coagulation kernel K(x, y) that
satisfies

(1) sup()gx,y<oo K(-x9 )’)(1 +x+ )’)_1 < oo,
(i) foreacha € [0,1)and y € [0, o), the function lim,_,  ¢(x, y)x~* is bounded
on each finite segment of the change of y, and
(i) K(x,y) < C(1 + x*y*), where C is a nonnegative constant.

In [12], the uniqueness of C—F equation has been studied for a strong fragmentation
kernel and the coagulation kernel that satisfies

K(x.,y) < C[(1+ 01+ )’ + 1+ 01+ )]

where 0 <a < f <1
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In [3], a proof for the unique global time-dependent solution has been established
for the problem with a polynomially bounded fragmentation process and a bounded
coagulation rate.

The existence and uniqueness of a weak solutions to (1.2) are found in [11]. In
[11], the coagulation kernel is taken in such a way that K(x,y) < ¢(x)¢(y), where ¢
satisfies

¢@) <k, A+x"), 0<u<l,
and the selection function follows
Sx) <k,(1+x)Y, 0<v<l.

Ernst et al. [8] analyzed the gelation property (formation of an infinite cluster after a
finite time) of the Smoluchowski’s coagulation system that has the coagulation ker-
nel in the form (xy)%, % < a < 1. For a special kernel, Ernst et al. [8] also provided
an explicit form of the solution.

From the existing literature, one can notice that there is a minimal study on the
analysis of the C—F equation with singular kernels. Recently, Ghosh and Kumar [10]
and Camejo et al. [4] proved the existence of the solutions for C-F equation with a
particular type of singular kernels. In this article, we explore the uniqueness of solu-
tions to the singular C-F equation that is considered by Ghosh and Kumar [10]. We
prove the uniqueness of the solution in the function space that is defined in [10].

The rest of the paper is presented as follows. Section 2 states the existence theory
of the solutions. In Sect. 3, we obtain the uniqueness of the solutions. Finally, we
conclude the entire analysis in Sect. 4 and give a future scope of studies.

2 Existence theorem

Here we recall the function space €2 /er(T) which is defined in [10]. The notation
€2, ,,(T) denotes the set all continuous functions f’s those are bounded with respect
to the norm

IFll,,, = sup / (expux>+i,)wx,r>|dx,
0 X2

0<t<T

where 0 < r, < 1. We denote

e, m=Je,,m.
>0
Further, .QIJZ(T) and .erz(T) denote the cone of nonnegative functions from Q2 (D)
and Q , (T), respectively.
In this paper, the proposed uniqueness result is analyzed in the space £, (T).
Before providing the uniqueness result, we state the result on existence of a solution
to the C-F equation (1.2) in the space erz(T).
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Uniqueness of solutions for the C-F equation with singular kernel

Theorem 1 (Existence result [10]). Suppose the coagulation kernel and the break-
age functions, K(x, y) and b(x, y), respectively, be continuous and nonnegative in
(0, 00) X (0, 00). Further, we assume that K(x, y) be symmetric in (0, o) X (0, o) and
S(x) be a nonnegative and continuous function on (0, 00). Moreover, let there exist
Sour positive constants k, S|, f and ny such that

i) Ky <k %ﬁ)r all x,y € (0, ), where u € [o, %] and 6 — u € [0, 1],

(i) S <S8, xforall x>0,
(iii) for somey € (0, 1), foy ﬁb(x, y)dx < ;l—f, and
iv) limy_ SUD e [xy.1,] b(x,y) < cofor0 < x; < x, < c0.

If the initial data f, lies in “Q:er (0), then the problem (1.2) has a solution in .erz(T).

3 Uniqueness theorem

In Theorem 1, the existence of a solution to (1.2) is given. In this section, we prove
the uniqueness of the solutions to (1.2), in the space of functions £, (T), under the
assumptions stated in Theorem 2 below. To prove the uniqueness result we use the
following lemma.

Lemma 1 (See [7]). Suppose v(A,t) and its partial derivatives v, and v,, are con-
tinuous on D = {(A,1) : 0 <A< Ay, 0<t < T}. Assume that a(A), p(4,1), y(4,1)
and 0(A,t) are real-valued and continuous on D, and their partial derivatives with

respect to A are continuous on D. Moreover, suppose that the functions v,v,, p,y are
nonnegative. Let the following inequalities also hold on D :

v(A, 1) < a(d) + / (B4, ), (4, 5) + y(A, 5)v(A,5) + O(A, 5))ds
0
and
v,(4, 1) L a,(4) + / %(ﬁ(ﬁ, W, (4, 8) + ¥ (A, 5)v(4,5) + 0(4, 5))ds.
0

We denote Cy = supy;<; @(4), C; = supp, f and C3 = supy, 0. Then,
V(A1) < Coexp(Cyt) + 2 (exp(Cyt) = 1)
2
in a region as follows:
R={(A41) 1 0<t</<TAy—Cit<A<i—-Cit,0< Ay <Ay} CD,

where T' = min { %, T}.
1
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Theorem 2 (Uniqueness result). Let the kernelsK(x, y) and b(x, y) in (1.2) be non-
negative and continuous in (0, 00) X (0, 00). Further, let K(x, y) be symmetric on
(0, 00) X (0, 00). Suppose also that S(x) be continuous and nonn_egative in (0, c0).
Furthermore, let there exist five positive constants k, S|, f, ny and b such that

0
Q) Kny) <k (‘X:;;V ) forall x,y € (0, ), where u € [o, %] and 6 — u € [0, 1],
(i) S <S8, xforall x>0,
(iii) for somey € (0, 1), fo) ﬁb(x, y)dx < ;l—f, and
(iv) limy_ o sup,epy, ,] b0, ) < b for all xy, x, such that 0 < x, < x,.

y
Then, the solution to the initial value problem (1.2) is unique in the space

Q...

Proof Suppose that there are two solutions ¢ and g, in Q,rz(T)’ to the initial value
problem (1.2). We prove thatc = g.

Let u(x,1) = cx,t) — g(x, 1) and w(x, 1) = c(x, 1) + g(x,1). Since ¢, g € .Q.’,Z(T),
there exists a A > 0 such that

/ B (exp(ix) + lv)u(x, f)dx < oo
0 X

™ | 3.1
and / <exp(ix) + —)u/(x, Hdx < o
0 xv
uniformly with respectto#,0 <t < T.
Let 0 < 1 < A. Then, by the definition of u, we obtain
ou(x, t 1 [
M0 - o / K = y,3) (e = 3, 060, 1) — 80x = y, D83, 1)) dy
0
_/ K(-x’y){c(-x7t)c(y’t)_g(xvt)g(y’t)}dy
0
+ / b, NSO{c(, 1) — gy, D} dy — SX){clx, 1) — g(x, 1)}
(3.2)

Here we recall that

1, when ¢ > 0,
sgn(f) =4 0, whent =0,
-1, whent < 0

and
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Uniqueness of solutions for the C-F equation with singular kernel

@ (P(t)) P(t)
We define
UGh1) = /O ) <exp(/1x)+ )|u(x 0l dx 3.3)
and
Y1) = /0 ) (expCio + Yyl d, (3.4)

where vis so chosenthat0 < v <r, — .
Multiplying both the sides of (3.2) by (exp(4x) + )%) and then integrating we get

UL, 1)

/ / exp(Ax) + sgn(u(x s))

[2/0 K(x—y,{cx—y,5)c@,s) —glx—y,5g(,s)} dy
- / K(x, y){c(x, 9)c(y,s) — glx, $)g(y,s)} dy
0
+ / b, S c(y,s) — g(y, )} dy — S(){c(x, s) — g(x,5)} | dxds

t
= / U, + L, + L)ds,
0

3.5
where
I, = % /000 (exp(ﬂx) + %)sgn(u(x, s))
x 3.6)
/ K(x =y, n{clx—=y,5)c(y,s) — glx—y,9g(y,s)} dydx,
0
L= / (exp(ﬂx) + lv)sgn(u(x, )
0 X
o 3.7
/0 K(x, ) {clx, $)c(y, s) — glx, $)g(v, )} dy dx,
and
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I =/ (exp(/bc) + %)sgn(u(x, s))
{ . (3.8)
[/ b(x, M)SO{c(y,s) — g, )} dy — S(x){c(x, s) — g(x, $)}| dx.

By changing the order of integration of I; and then substituting x —y =x', y =)'
and re-changing the order of integration, we obtain

I, =% /0°° /Ooo (exp(/l(x +y) + o -:y)v ) sgn(u(x + v, $)K(x,y)

{c(x,9)c(y,s) — g(x, )8y, s)} dy dx.

Putting this relation in (3.5), we get

U(ht) = /0 /O ¥ /0 ® [% (exp(/l(x M+ : > ) sgn(u(x +y, s))

- <exp(ﬂx) + %)Sgn(u(M S))]

K(x, y){c(x, $)c(y, s) — g(x, $)g(y, s)} dy dx ds (3.9)

+ / / (exp(/lx)+lv)sgn(u(x,s))
o Jo X

[/ b, )S){c(y,s) = gy, )} dy = S){c(x, s) — g(x, 5)} | dxds.

(3.10)

From (3.9), we get

gy —

- (eXP(M) + )% )Sgn(u(x, S))] K(x, y){c(x, $)c(y, ) — g(x, 5)g(y, 5)} dy dx

= % /0 /0 [(exp(/l(x +y)+ = +1y)V ) sgn(u(x +y,5))

— (exp(/%x) + %)sgn(u(x, s5)) — (exp(/ly) + )%) sgn(u(y, s))]

K(x, y){c(x, s)c(y, s) — g(x, $)g(y. $)} dy dx.

@3.11)

We note that c(x, s)c(y, 5) — g(x, $)g(y, s) = u(x, $)c(y, s) + g(x, Hu(y, s).
Thus, (3.11) gives
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[ <exp(ﬂ(x +y)+ )sgn(u(x +y,5))

1
(x+y)V
—<GXP(/1x) + %)sgn(u(x, 5)) — <exp(ﬂy) + yl—v>8gn(u(y, s))]
K(x,y) u(x,s) c(y, )

= [ <exp(/l(x +y) +

o -:y)v ) sgn(u(x +y,s))

- <exp(ﬁx) + %)sgn(u(x, s)) — (exp(ﬂy) + y—lv>sgn(u(y, s))]

K(x,y) sgn(u(x, s)) [u(x, s)| c(y,s) since z = sgn(z) |z|

= [ (exp(/l(x +y)+ >sgn(u(x +,5)) sgn(u(x, s))

(x+y)yV
- (exp(/Ix) + %)(sgn(u(x, 5))*

X
- <exp(ﬂy) + y—ﬂ)sgn(u(y, ) sgn(u(cx, s>>]
K(x,y) lulx, s)| ¢y, s)

< [(exp(ﬂ(x +y)+

1 > + <exp(/ly) + i>]K(Jc,y)|u(x, $)|c(, s)
(x+y)y »
(because sgn(u(x +y, s))sgn(u(x, s)) < 1, sgn(u(x, s))sgn(u(y, s)) < 1,

and (exp(/lx) + 1 >(sgn(u(x, s))z, c(y,s) and K(x,y) are nonnegative)
x\/

<

<6XP(/1(X +y)+ > + <6XP(/1y) + y%)] K(Qx, y)u(x, )|y (y, s).

(3.12)

(x+y)

By a similar approach, we get

[(exp(ﬂ(x +y)+ >sgn(u(x +y,5))

1
(x+y)
_ (exp(ﬂx) + %)sgn(u(x, s5)) — <exp(ﬂy) + }%) sgn(u(y, s))]

K(x, y)g(x, s)u(y, s)

i 1
< (exp(i(x T+ y)v> + (expti + v )

K(x, ) u(y, 9)lw(x, s).
(3.13)

With the help of (3.12) of (3.13), from (3.11), we get
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/ / [ <exp(l(x +y) + = —:y)‘/ > sgn(u(x +y,s))

- (exp(ﬂx) +— ) sgn(u(x, S))]
X
K@, ) {c(x, $)c(y, s) — g(x, )g(y, s)} dy dx

< /oo/oo [(exp(ﬂ(x+y))+ ! ) + <exp(/1y)+ l)]
o Jo (x+y) »

K(x, y)u(x, $)|y(y,s)dy dx

/ / 2 exp(Ax) [exp(iy) + —

In the next, we evaluate a few inequalities to proceed for the proof.

(1+27+5%)

) —————|u(x, $)|w(y, s) dy dx.

(3.14)

@) / " exp(Ax)x™#|u(x, 1)|dx
0

1 0
= / exp(Ax)x™#|u(x, t)|dx + / exp(Ax)x™#|u(x, 1)|dx
0 1

IA

1 [+
exp(4) / X Hlu(x, 1)|dx + / exp(Ax)|u(x, t)|dx
0 1

IA

exp(4) /O 1(exp(/lx) +x7)|ux, )] dx
+ / oo(exp(,bc) +x7)ux, )| dx
- U(/ll, (1 + exp(A). (.15
(ii) /0 " exp(Ax)x?#|u(x, 1)|dx
= /0 lexp(/lx)xe_"|u(x, f)|dx + /1 " exp(Ax)x"H|u(x, 1)|dx
< exp(4) /0 | |u(x, )] dx + /1 mxexp(/lx)lu(x, 0)\dx
< exp(A) /0 l(exp(/lx) + 1) ux, )] dx

+/ (xexp(Ax) + x7 V) |u(x, t)|dx
1

< 2UOL 1) + U, (A1), where y, = 1+ exp(4). (3.16)
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Uniqueness of solutions for the C-F equation with singular kernel

(iii) / (exp(Ay) +y ")y " c(y, t)dy
0
1 0
= / (exp(Ay) +y™ )y e(y, )dy + / (exp(Ay) + y™")y Hc(y, t)dy
0 1

1 [
< (exp(d) + 1) / y " e(y, Hdy + / (exp(4y) +y™")c(y, )dy
0 1
< XN_,_, + (4,0,
= yox1 +¥, where y; =N_,_,

=TI, say.
(3.17)

i) / (exp(y) + y™ )" Fe(y, )dy

0
1 0

= / (exp(Ay) +y ™" N c(y, Ddy + / (exp(Ay) +y™" N c(y, )dy
0 1
1 Y

< / (exp(Ay) +y ec(y, Hdy + / (exp(4y) + Dyc(y, t)dy
0 1

<llelly,, + / (vexp(Ay) +y™)e(y. D)dy + / ye(y, t)dy
1 1

SY+Y, +M

=TI,, say.
(3.18)

For the expression (3.8) we have

I =/0f/0°° (exp(/lx)+)%>

[/ b(x, )SWMIU(y, s)| dy — S(x)|U(x, s)I] dxds
=/ /°°exp(/lx)[/‘”b(x,y)S(y)IU(y,s)|dy—S(x)|U(x,S)|] dx ds
0 Jo .
+// xi[/ b(x’y)S(Y)lU(y’sNdy—S(x)|U(x,s)|]dde,
0 Jo .
(3.19)

By a similar analysis of the expression (2.5) in [10], we note that

dx <0, fork=1,2,3,....

/0 & [ / b NSOV, )| dy = S| U 5|

With the help of the hypothesis (iii) of Theorem 2 we get from the Eq. (3.19) that
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// (1+%)[/ b(x,y>S(y>|U<y,s>|dy—s<x>|U(x,s>|]dxds
o Jo X x
S(no—l)// <1+%>S(y)|U(y,s)|dyds
o Jo y
s(no—l)Sl// (1+lv)y/’|U(y,s)|dyds
o Jo y
t 1 0
s(no—l)Sl/ [/ <1+lv>y/’|U(y,s)|dyds+/ <1+lv>y”|U(y,s)|dyds]
0 0 y 1 y

(3.20)
t 1 o0

< (no—1)51/ [/ (1+y1—V)IU(y,S)Idde+/ (1+1)yﬂ|U(y,S)|dde]
0 0 1

t
< F3/ U(A, s)ds.
0

(3.21)
By the inequalities (3.15)—(3.18) we obtain from (3.9) and (3.10) that

U(/l,t)SZ/[FIU(1+exp(/1))+F2U(1+exp(/1))+Fl(U+ U, + I3Ulds
0
:2/[U((F1+F2)(l+exp(/1))+F1+F3)+F1U,1]ds
0

t
= 2/ [U((Z)((%)(l +My,+I3) + PGBy + V) + U,Crox: +P)lds.
0

(3.22)

Till now we have attempted to obtain a bound for the function U(4, ¢). In the next,
we endeavour to obtain an upper bound of the partial derivative function U, (4, 1).
We recall from (3.3) that

U,(A1) = / N <x exp(Ax) + - ) |u(x, 1)]dx,
0 XY

where we choose v to be 0 <v <r, —pu. Multiplying both sides of (3.2) by
(xexp(Ax) + )%) and integrating with respect to x € (0, co) we get

U,(4,1)

=/0/0 /0 [%<(X+y)eXp(/1(x+y))+(x:y)v>sgn(u(x+y,s))

- (x exp(Ax) + iv >sgn(u(x, S))]
X
K, ) {c(x, )c(y, s) — g(x,5)g(v, s)} dy dx ds

(3.23)

@ Springer



Uniqueness of solutions for the C-F equation with singular kernel

+ / / <xexp(/1x)+iv>sgn(u(%$))
o Jo X

[ / b(x, SO {c(y,s) — gy, 5)} dy — S(){c(x, s) — g(x, S)}] dxds.

X

(3.24)

From (3.23), we get

/0 /O [% <(x +y) exp(A(x +y)) + = J:y)v )sgn(u(x +,5))
- (x exp(Ax) + iv ) sgn(u(x, S))]
X

K@, {clx, $)c(y, s) — g(x, )g(y, s)} dy dx

= %/000 /Ooo [<(X+Y)exp(/1(x+y))+ (x_'}y)v>sgn(u(x+y,s))

- (x exp(4Ax) + % )sgn(u(x, s)) — <y exp(Ay) + )%) sgn(u(y, s))]

K(x,y){c(x, $)c(y, s) — g(x, $)g(y. )} dy dx.

We note that

(3.25)

c(x, $)e(y, s) — 8(x, $)g(y, ) = u(x, s)c(y, s) + g(x, Hu(y, s).
Thus, from (3.25), in the lines of obtaining (3.12), we have

[((x + y) exp(A(x +y)) + >Sgn(u(x +,5)

1
(x+y)
— (x exp(4ix) + )% >sgn(u(x, s)) — (y exp(Ay) + }%) sgn(u(y, s))]
K(x, y)u(x, s)c(y, s)

< [((x + ) exp(A(x +y)) +

3.26
(x+y) ) (.20

+ (y exp(4y) + yl—v>] K(x,y) |u(x,s)| c(y,s)

<

<(x+y> exp(Ax +)) + — > + <yexpuy> + i)]
(x+y)yV »w

K(x, ) [u(x, )| w(y,s).

Similarly,
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[((x +y)exp(Ax +y)) + >Sgn(u(x +,5)

(x+y)V
- (x exp(Ax) + )% >sgn(u(x, s)) — (y exp(Ay) + }%) sgn(u(y, s))]
K(x, y)g(x, su(y, s)

1 1
<(x + y)exp(Ax +y)) + Gy > + (x exp(Ax) + o )]

K(x,y) [u(y, s)| w(x,s).

With the help of (3.26) and (3.27), from (3.25), we get

/0 [) [% ((x +y)exp(Ax +y)) + = -:y)v > sgn(u(x + y, 5))

- (x exp(Ax) + - )sgn(u(x, s))]
xV
K, y){c(x, 9)c(y, s) — g(x, $)g(y, )} dy dx
< / / [<<x+y)expu(x+y»+ ! ) + (yexpuy)+ i)]
0 0 (x+yyV »
Ko, y)|u(x, )|y (v, s) dy dx

< / ) / ) [(x exp(AGe + 7)) + y exp(ACx + ) + 2<y exp(Ay) + %)]
0 0

K(x, y)u(x, s)|y (v, s)dy dx.

(3.27)

<

(3.28)
Next, we proceed after executing the following inequalities.

@) / " xexp(A)x?#|u(x, s)|dx
0

1 0
= / xexp(A)x? 7 |u(x, s)|dx + / xexp(A)x? 7 |u(x, s)|dx
0 1

1 0
< / x exp(Ax)|u(x, s)|dx + / X exp(Ax)|u(x, s)|dx
0 1

S U/1 + U/H,'
(3.29)
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(i1) /0 ) exp(4y)y “c(y, s)dy

= /0 1 exp(4y)y #c(y, s)dy + /1 weXp(ﬂy)y‘”C(y, s)dy

< / 1 exp(A)y “c(y, s)dy + / ) exp(4y)c(y, s)dy

< [:xp(/l) +11P(4, 9). 1 (3.30)
(iii) /0 e exp(Ax)x*|u(x, s)|dx

= /0 lxexp(/lx)x'”lu(x,s)ldx+ /1 ooxexp(ﬂx)x'”|u(x,s)|dx

1 oo
< / x~V exp(A)|ulx, s)|dx + / x exp(Ax)|u(x, s)|dx
0 1

<exp(4) U,.
(3.31)

@iv) / (yexp(dy) +y ")y c(y, s)dy
0
= / (yl_” exp(Ay) + vy #")c(y, s)dy
0

1 0
= / Y exp(Ay)e(y, )dy + / Y T exp(Ay)e(y. )dy + N_,_,
0 1

<SP+, +N_,_,.

(3.32)
) / Yy exp(Ay) + y™)e(y, s)dy
0 (3.33)
Similarly, we obtain
/ exp(Ax)x™#|u(x, s)|dx < U(1 + exp(4)),
0
/ exp(Ax)x’#|u(x, s)|dx < U+ U,,
0 - (3.34)

/mxexp(ﬂx)x_”lu(x, $)|dx < U,;(1 + exp(4)),
0

and / xexp(A)x?#|u(x, 5)|dx < U,+U,,.
0

J
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Further,

/ exp(Ax)x #c(x, s)dx < (1 + exp(1)¥P,

0

/ exp(Ax)x?#c(x, s)dx < (1 + exp(A)¥,,
% o - (3.35)

/ xx Hexp(Ax)g(x, s)dx < W,
0

and / xx?7H exp(Ax)g(x, s)dx < exp(W¥, +¥,,.
0

J

With the help of (3.34) and (3.35), the inequalities in (3.23) and (3.24) yields
U,(A4, 1)
t
<2 / [U,(1 +exp(D))*¥ + (U, + U, )(1 + exp(A)¥ + U, (1 + exp(1))*¥,
0

+ U1 +exp())¥Y + (U + U,I)EP + U(1 + exp(D))(exp(D¥, + ¥,,)
+4U(1 +expD)P +¥, +N_,_ )+ U+ UHW¥P +¥,+N_,_)
+ W +¥,, +Ny_,- Ul +exp(A)) + I3Ulds

t
= 2/ (U620 +2) +Pi(x5 + 420+ 1D+ ¥1,22)
0

+@xon + 1+ xox) + 13)

+ U+ 10+ D+ ¥,(0 + D+ 2) + xo® U, ds,
(3.36)

where y, = 1+exp(4), y; =N_,_,and y, = Ny_,_,.

The functions U and ¥, defined in (3.3) and (3.4), respectively, are analytic in
0< A< Aand for any fixed t € [0, T].

Let us choose A that satisfies

0<A< g <A (3.37)

Then, the inequality (3.1) ensures that for any integer i > 1,

sup { — U, 1), T(ﬂ t)} (3.38)

0<i<T, 0<i<i, | OA!

Since u(x, f) and w(x, t) are continuous on IT = {(x,7) : x € (0,0), t € [0,T]} and
they satisfy the inequalities in (3.1), corresponding to a given ¢ > 0 there exist num-
bers 6(e) > 0 and 6,(¢) > O such that fori > 1,
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sup {|U(A 1) = U DL 1P (A1) P40} <e
0<A<4,

0
and su A ) — —U At
oszgo{ oA v oAl ( )‘ ‘

AR ) — —qf(/l z)‘}
(3.39)

for|f —t| < Swithr>0and? <T.
To show the inequalities in (3.39), we note from (3.1) that for a sufficiently large
>0,

|U4, 1) = U(4,0] < / ) <exp(/lx) + l)|u(x, ) —u(x, )| dx
0 xY

¢ 1

_ / (exp(/lx) + —V)lu(x, ) — u(x, 1)] dx
0 X

[o9) 1 ,
+ / (exp(/lx) + = > |u(x, ) — u(x, t)| dx,
; x

which is finite, by (3.1). Hence, the term féoo (exp(ﬂx) + %) |u(x, 1) — u(x, )| dx can
be made arbitrarily small. Thus, there exists a §,(¢) > 0 such that

sup |UAE)Y—U@ D] <e

0<A<4,

for|t' —r] < §witht > 0and# < T. Similarly, the other three terms in (3.39) involv-
ing¥, %U and ‘)—'[‘P are arbitrarily small in a range of .

It follows from (3.38) and (3.39) that U and ¥ and their partial derivatives are
continuous on A in D = {(4,1) |0 <1< 1,0 <t < T}. From inequalities (3.22)
and (3.36) we get the following functions:

1At = (@ A+ ay + b + QM2 + 1)+ a)¥, + (@ +as +27,), (3.40)

and ¢;(4, 1) =2(x + D¥ + 210115 (3.41)

where a; =2(6y0+2), by =2Cx+2+ 2+ x0+2). ay =203 +4x+1),
as = 640, ay, =2@4xo + 1+ X002 + I3), as =250 + My + I3),
Xo=1+exp(d)and y; = N. such that

R
U(/l,t)S/{cl(/l,s)U(/l,s)+cz(/1,s)U/1(/1,s)}ds
0

‘y (3.42)
and U,(4,1) < / a{cl(i, U4, 8) + c5(A, 5)U (4, 5) }ds,
0

and U, ¥ and their partial derivatives with respect to A are nonnegative in D. Then,
by applying Lemma 1 in D, we obtain U(4,f) = 0 in R as defined in Lemma 1.
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Since u(x, ) is continuous, u(x,1) = 0 for0 <t < ¢, 0 < x < co. Thus, U(A,1) =0
is not only true on R, but also for0 < 1 < 4,0 <t < 7.

Applying an analogous argument on the interval [, 2¢'], we see that u(x,7) =0
for 0 <t <2¢, 0<x < oo. Continuing this process, we establish that u(x, 7) = 0 on
IT,i.e.,c = gon II. This completes the proof. a

4 Conclusion

In this paper, we have proved the uniqueness of mass conserving solution for a con-
tinuous coagulation—fragmentation equation. The considered class of coagulation
kernels has a singularity at the origin. In the next step of this study, we will attempt
to investigate the gelation phenomenon and asymptotic behavior of the time-depend-
ent solution for fragmentation and coagulation models with a singular kernel. In the
future, one can also attempt to explore an explicit solution to the problem that we
have considered here. The self-similar approach might be an appealing procedure to
find the explicit solution.
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