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Discrete Space and Tiling

e Discrete Space
Integral coordinate space: Z"
e Digital grid
A finite subset of integral coordinate space: G" c Z"
represented by a n-D rectangular array
e Tessellation or Tiling

2D: A bounded region of a specific shape that fills the
plane with no overlaps and no gaps

Center of the region lies at a grid point

Regular tiling: All the space filling units are similar and
of the shape of a regular polygon

Generalization to n-D regular hyper-polyhedron
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Regular Archimedean Tiling
e In2-D:3

INENINN NN

NONININS

Triangular Hexagonal Rectangular

e In 3-D: 1 (Rectangular)
e In4-D: 3
e Inn-D, n>4: 1 (Rectangular)

Our focus: Digital geometry in rectangular grid !
2-D or 3-D




Why digital geometry?

e Digital Distance Function ( different domain and range)
d: Z"x 2" P (or R)

e Finite neighbourhood.

e Things are different (due to digitization.)




Motivation

e EXxact analysis: As they are in the digital space.

e Analysis of approximation: Error bounds from Euclidean
measures, better understanding in correlating corresponding
objects and shapes.

e Efficient computation: Finite neighbourhood and integer
arithmetic.

e Empirical Techniques: Finite enumeration.




Distance Function

e Distance Function:
d: R"x Rn R

e Digital Distance Function:
d: Z"x 2" P (or R)

e A function of two points in a space measuring their
separation or dissimilarity.




Examples:

(@), u(2)........., 1u(n))
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u

v
L (u,v)= [Zl u(i) —v(i) |pj
L (u,v) = ZI u()—v(@) |
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Neighbourhood

e-Neighbour:
a point g is in N(p),
iff d(p,q) < €.

Desirable: Compact and bounded.




Length of the path =n. €

Desirable feature:
Distance = Length of the shortest Path.




Metric & Conditions:

d(u,v)=0iffu=v d is defined for

_ every pair of points
d(u,v)=d(v,u in the space.
d(u,v)+d(u,w)>d(u,w),

Vu,v,weR"(Z")

N(x;d) is a Norm of d if
N(x;d) = d(x, O) where x =u — v



Why a metric?

e A bounded and compact neighbourhood around a
point in the space.

e There exists an optimal path between two points,
such that the length of this path is given by the
distance function.




Neighbourhood structure:

Examples N
| Linorm N

Desirable features: \ /
Isotropy and symmetry:

Isotropic in all directions.

Uniformity: A I,
Identical at all points of the /\
space. L, norm -
Convexity: K J
In the sense of Euclidean

geometry.

Self-similar: (A
Similar structure at varying

resolution. L., norm >
{2 cknowledgement: Figure taken from http://en.wikipedia.org/wiki/File:Vector| norms.svg




Geometry built on distances

e Shortest Paths in Euclidean Space
Straight Lines
e Geodesics on Earth
e Parallel Lines
Equidistant Ever
e Circle
Trajectory of a point equidistant from Center
Least Perimeter with Largest Area
e Conics are distance defined.




Neighbors of Pixels in 2-D

e P=(xyy)
e 4-Neighbours
N4(P) = {(x-1,y), (x+1y) , (x,y-1), (x,y+1)}
e Diagonal-Neighbours
Np(P) = {(x-1,y-1), (x-1,y+1) , (x+1,y-1), (x+1,y+1)}

e 8-Neighbours
Ng(P) = N4(P) U Np(P)

5 ol ol o Fpr a digital
distance:
© © 0 0 A neighbor is at
0 o| ol o distance 1.
4-neighbors 8-neighbors




Digital Distances in 2D
For u, veZZ and x = [u - V|=(X1 Xp),

Cityblock:

ds(u, v) = X1+X; ,
Chessboard:

dg(u, v) = max(Xy, Xz),
Octag onal ( uses non-uniform alternating neighborhoods ) .
d...(u, v) = max(xy, X, [2(X; + X,)/30] .




Octagonal Distance

T P
T d(a,b) = 10
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R Neighborhood sequence {1,2}
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Weighted Distance

For u, veZ2 and x = |u - v|=(Xy X5),

b e b

Metric Conditions:
a<b andb < 2a

deap-(U, V) = a.max(x; , X3 )+ (b-a). min(x; , X;)




Weighted Distance: An example
of a path

d<a,b>(plq)=5b+2a

O a(7,5) N _ _
: For a=1 and b=1.4,
£ et 25(P/A)=9.

vy Euclidean distance:
s de(p,q)= 8.6




Circle of a weighted distance

<1, V2>




Neighbors of Voxels in 3-D

o P=(xy,2)
6-Neighbors (Face),
18-Neighbors (Edge) &
26-Neighbors (Corner)

=) mit!

L

6—-Neighbors 18—Neighbors
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26—Neighbors
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Digital Distances in 3D

Foru, v e Z3and x = [u - v|,

des(u, v) = Xy + X5, + X5, (grid distance)
dig(U, ¥) = max(xy, X, X3, [ (X; + X5 + X3)/21)
d,e(U, V) = max(xy, X, Xz) (lattice distance).

Like 2D, in 3D also Octagonal and
Weighted distances are defined.




Digital discs

— o —»

2D

dxe




Vertices of octagonal discs:

a . b
2D {1 zb} : permutation of (xR, * R)
a+b
3D: {fl 2b 36}: permutation of (R, * btc R, + < R)

a+b+c  a+b+c




Octagonal Digital Circles

1,2} {1,1,2} 1,1,1,2)




Octagonal Digital Spheres

A
D © &
12! 1,134 1,2,3}




Binary Image

o f:G"—> {0,1}

e Foreground and background
p €G"is in foreground, iff f(p)=1, otherwise it is in
background.

Foreground consists of object points.
« S : foreground
« S¢=G"-S : background

e Adjacent neighbor

A neighboring foreground pixel
2D: 4 / 8 - adjacency
3D: 6 /18 / 26 - adjacency
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Path

e A Sequence of distinct pixels satisfying pair-wise adjacency

e Length of the path
Number of adjacencies

One less than the number of points
o Shortest Path between two pixels can be non-unique
o Closed Path: Same Start and End Points

5,-6,111
t—6,-17,111
2'D {=3,-7,101

3-D
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Connectivity

e Two pixels are Connected if there exists a path
between them.

e Pixels connected to a given pixel form a
Connected Component.
A Region is a Connected Set of foreground points.

e Foreground & Background
Foreground: Union of all disjoint Regions in an Image
Background: Complement of Foreground

e Boundary or Border

Inner Border: Set of points in R adjacent to complement of R
Outer Border: Set of points in complement of R adjacent to R 28




4— and 8—Neighbors Dichotomy

e Jordan’s Curve Theorem

Every simple closed curve divides the
plane into an "interior" region bounded by
the curve and an "exterior" region
containing all far away points

= Any continuous path connecting a point of one
region to a point of the other intersects that loop

somewhere.

e Digital Jordan’s Curve Theorem

Deviates from the theorem.
Use alternate adjacency for interior / exterior

29
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Limitation of Jordan's curve
theorem in digital space

Ve U o Y o VY 20 Y a0 WY 2 WY 2\

O

C) \/ ./ Y N\ \/ N\ |\ \S

N N I\ ) N N N
\/ \/ N -/ \/ \/

XIRPRIIXIIXES

@

A\ W A A A N

(8,4) (4,8)
A single component Three components
Foreground points with similar configuration!



Component labeling

e Form a graph with edges between neighboring
foreground pixels.

® Compute connected components.

Graph traversal algorithms
Storage inefficient for large components

00 @ U
00 @ U
O
O

00O O

O RO O
O RO O
O
O OO O
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Two Scan Labeling

e Use of two masks for
e Forward scanning: Top to bottom and left to right
o Backward Scanning: Bottom to top and right to left

Chamfering!

p : For 8-adjacent
connected
component

(b)
o Check the labels (a number) of neighbors at a foreground point p

e If <no label> found, create new unique label
o Else assign the label of a neighbor.

For multiple labels declare them equivalent and assign the
lower numeral id.
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Distance Transforms (DT)

e Distance Transform: At every foreground pixel p
(i.e. f(p)=1), it stores the distance of the pixel from
the nearest background (f(.)=0) pixel.

e For all pixels p of an image S, the DT algorithm
computes:

t(p) = min, {d(p, qi): S(qi) =0, 1 =k <[S|}
e DT(S): Image of t(p)’'s, called the DT image.

33




Distance Transforms for

Binary Images (d,)
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Distance Transforms for

Binary Images (dg)
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Distance Transforms Algorithms

e Brute Force Algorithm

For every pixel in foreground F compute the distance to
every pixel in background B and find the minima

Let the image be of size n

Letf=|F|,b=|B|,f+b=n

Often f = O(n) and b = O(n)

Number of distance computations = f.b = O(n?)
We need a better algorithm

36
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Chamfering Algorithm for
Distance Transform

e Initialize all DT values to infinity.
e Perform two scans: Raster & Reverse Raster

e In every scan Chamfer with a mask

e At every pixel position, add the mask weight with the pixel
covered and take the minimum

DT(o) = min (DT(Neighboring pixel) + local distance between them)
. Computes DT for ‘additive’

»
>

a|b| a b distances
b a|b|a b =1, a = 2: City Block
\ « b=1,a=1: Chess Board

Forward Scanning  Backward Scanning b=1,a= 2 Weighted
4%From Left to Right ~ From Right to Left ~ Complexity = O(n) =
(A\¥*and Top to Bottom and Bottom to Top




Two pass chamfering algorithm

to compute DT with d,
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Two pass chamfering algorithm

to compute DT with dg
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Distance Transform: An
example

Input image Output




DT: Properties -1

e [1] t(p) represents the radius of the largest disk
centered at p and totally contained in F

U Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008




DT: Properties -2
e If there is only one g € B with t(p) = d(p, q):

e (a) an element p’ € F exists such that the disk centered
at p’ totally contains the disk centered at p (disk B is
totally included in disk A)

o (b) elements p’ € F and g’ € B exist such that d(p, q) =
d(p’, ') and p is adjacent to p’

(a) (b) .

[2)® Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008




DT: Properties -3

e If there are two (or more) g, g’ € B such that
t(p) = d(p, g) = d(p, 9’), then the disk centered
at p is a maximal disk in F and p is symmetric

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008



Medial Axis Transform




Computation of Medial Axis
Transform

. Compute the distance transform.

. Compute local maxima in the
distance transformed image.




Application of MAT in Image
Analysis

. Geometric Transformation ( )

- Computation of Normals ( )

- Thinning of binary pattern ( )
- Computation of cross-sections of 3D objects

( )

- Visualization of 3D objects (

)

- Image compression ( ).
. Shape Description ( )




Thinning from Distance
Transform

Compute the set of Maximal Blocks

Use them as anchor points while
iteratively deleting boundary points
preserving the topology.




Normal Computation

e Normal at a point p computed by computing
the resultant vector from that point to the
neighboring medial circles.

J. Mukhopadhyay, et al (2013), "Digital Geometry in
Image Processing", CRC Press, April.




Normal Computations:
Examples

J. Mukhopadhyay, et al (2013), "Digital Geometry
in Image Processing", CRC Press, April.




Cross-sectioning

Crass-sectional Pline

N
OY= J. Mukhopadhyay, et al (2013), "Digital Geometry

.~ 1n Image Processing", CRC Press, April.

(&
(

*

Obect verte



Cross-sectioning with different
distance functions.

J. Mukhopadhyay, et al (2013), "Digital Geometry
in Image Processing", CRC Press, April.




A set of objects for
experimentation

J. Mukhopadhyay, et al (2013), "Digital Geometry
in Image Processing", CRC Press, April.




Cross-sectioning: Voxel data,
MAT & Sphere Approx.

Euclidean Sphere
Voxel Data MAT Approximation

J. Mukhopadhyay, et al (2013), "Digital Geometry
in Image Processing", CRC Press, April.




Shape representation in 2D

Boundary (Border) Following
Chain Codes

Polygonal Approximation using Minimum-
Perimeter Polygons (MPP)

Polygonal Approximation by Merge/Split
Signatures

Boundary Segments

Skeletons

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur

54



J. Mukhopadhyay, et al (2013), "Digital Geometry
in Image Processing", CRC Press, April.

Boundary (Contour) Following
e Boundary

O—0—O0—0—0—0—0—0——0
e Good representationofan L L L L L L L L [

object shape
O—0O—O—O0—0—O0—0O—0—0)

e Requires less memory.

O—O—O)—0O O—(N—)—N O
_J N Y Y o N\ \/ Y -
n u . C\ ) ) e ) ) ) VG f)

d N Y/ 4 Y/ Y/ S

e Border points \\ Lol

2
A foreground (object) point \ /

N
\/
)
\/
O

which is m-adjacent to a O 000
background point in (m, n) O—O—< O

grid. O—O—O0—+0 I olﬁ—o—o
e Output: Aborderjpoint An interior

e Ordered sequence of ~point
these points (8,4) Grid




T. Pavlidis. Algorithms for graphics and image processing. Computer
Science Press, Rockville, MD, 1982.

Contour following algorithm
e Start from the leftmost and topmost border point p

with its left neighboring background point g. Mark
p visited.

e Perform clockwise search among 8-neighbors of g
to get the first foreground point except the
preceding border point . Assumtion: O anti-

o Ifitis already visited Simple clockwise

stop and output the sequence. contour (non - contour,
intersecting) :
e Else search in the

include it in the sequence, anti-clockwise
mark it visited and order.

continue from the recently visited point in the same
manner starting from the previous border point but 56

excludina it from consideration .




Search order and sequence:
An example

Ve VY o VY o VY oo VY 2 WY 2 W 2
O—O—O0O—O0O—O—0O—O—0O0—0

|\

)
W/
A

N\

The order of
g 2 » | searching a
foreground pixel in
0=y ) . | the neighborhood of
a border pixel p with
a background :
neighbor at g in an
@ (8 , 4) digital grid.
The order follows The sequence of g)airs of

clockwise movement border pixels (p; ; g;), where
starting from g p; belongs to foreground, and

. g; belongs to background,
J. Mukhopadhyay, et al (2013), "Digital Geometry . f h :
in Image Processing", CRC Press, April. reSpeCtlvely! or the pOInt set
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Chain Codes

e Representing a boundary of a connected region
e Based on 4 or 8 connectivity of the segments
e For every point code the direction of the next point

é

4-Directional Code  8-Directional Code =




Need for resampling

e The chain code of the same length as the
nerimeter of the object, in many cases too long

e Hence, re-sample the image to a lower resolution
pefore calculating the code

e The re-sampling also reduces noise sensitivity

N e
N

59
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Chain codes: Examples

! AP
'I I ﬁiﬁlﬁr

4-connected or
8-connected.

47 4 60
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Chain codes: various issues

e Starting Point (various options)
Topmost, Leftmost point
Context dependent choice

Normalize by
Assuming the code to be circular (closed curve) and
Choose the integer of minimum magnitude

e Rotation Invariance

Use first difference of the chain code

Obtained by counting the number of direction changes (in a
counterclockwise direction)

For example, the first difference of the 4-direction chain code
10103322 is 3133030.

Use circular shifting for minimal representation

e Size Normalization
Achieved by adjusting the size of the re-sampling grid.6

1
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Polygonal approximation

e Polygonal approximations
Represent a boundary by straight line segments, and
A closed path becomes a polygon

e Number of straight line segments?
Accuracy of the approximation
Larger number of sides add noise
Small number of side result in coarse shapes

e Optimize for minimum number of sides
Constraint: Preserve the shape information

62
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Polygonal Approximation using
Minimum-Perimeter Polygons

e Optimization involves Iterative Search
o Computationally Expensive

e Use: Approximate Optimization
e MPP: Minimum Perimeter Polygons

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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MPP Algorithm: intuition

IS

Boundary of an object In the discrete grid MPP: Vertices from
inner and outer walls

64
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Properties of MPP

e Size of the Cell =
Accuracy of Polygonal Approximation

o If size of a cell (dXd)= size of a pixel in the
boundary =>

Max error = V2d
e Use largest possible cells =
Fewest number of vertices in MPP

65
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Properties of MPP

e Boundary:

e 4-connected
e straight-line segments

e Mark counterclockwise
e Convex (90 deg turn) Vertices: White

e Concave (270 deg turn) Vertices: Black
Mirror Vertex for every Concave Vertex

e An MPP vertex is

e Convex Vertex on Inner Wall or
e Mirror of Concave Vertex on Outer Wall

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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MPP Algorithm: Intuition

Concave Convex

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008
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Not a vertex

Properties of MPP orMPP

e MPP bounded by a simply
connected cellular complex is not
self-intersecting

e Every Convex vertex of MPP is a
W vertex; but not every W vertex
of a boundary is a vertex of MPP

e Every Mirrored Concave vertex of
MPP is a B vertex; but not every B

vertex of a boundary is a vertex of
MPP

68
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Properties of MPP

e All B vertices are on or outside
MPP and all W vertices are on or
inside MPP

e The uppermost, leftmost vertex in
a sequence of vertices contained

In a cellular complex is always a
W vertex of MPP

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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Orientation of 3 points
a=(x,y),b=(x,,5,),¢c=(x;,5)

Xy N | e 0
A=\x, y, 1 +°

RPN
sgn(a,b,c) =det(A) =

> 0,1f(a,b,c)1s a counterclockwise sequence

-

= 0,1f the pomts are collinear

< 0,1f(a,b,c)1sa clockwise sequence

70
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MPP Algorithm

e Input: Vertices (with W/B Markers)

In a list in boundary order
e First vertex, V.

Uppermost, leftmost, a W vertex of MPP
e Crawler Vertices:

White crawler: W and Black crawler: B
e V,: Last MPP vertex found
e V,: Current vertex being examined

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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MPP Algorithm

e Let W, =B, =V,
e Repeat over the list
o [A] sgn(V ,W.,V,)>0
Vi <Wcand W =B-=V,_
Continue with the next vertex after V,.
e [B] sgn(V ,Wc,V,)<0 & sgn(V,B¢,V,)=20
W¢ =V, if Vis convex (W) Move either along W
Be =V, | otherwise or B as it appears and

_ _ record a MPP vertex if
Continue with the next vertex after V. conditions met. Start

* [C1sgn{VL.Be.Vi)<O vop verion,
V, €Bcand We =B. =V,

Continue with the next vertex after V,. 72
Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kha,,gpur




MPP Algorithm

e \Vertices:

V, (1,4) W
V, (2,3) B
V, (3,3) W
V; (3,2) B |
V, (4,1) W | 0
Ve (7,1) W
Ve (8,2) B
V,(9,2) B
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MPP Algorithm: Execution

o W-=B-=V,=V,=(1,4)
o V.=(24)W
e Condition [B]
o sgn(V W .V,)=0 &
e sgn(V_B.V4)=0
o W-=V,=(2,4)
e Next vertex: V,=(3,4) B

2
ERD
i Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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MPP Algorithm: Execution

e B=(1,4), Ws=(2,4)

o V,=(1,4)
o Vo=(3,4)

e Condition [B]
o sgn(V W, V,)=0 &
e sgn(V_B.V,)=0
o B-=V,=(3,4)
e Next vertex V5= (3,3) W

rgg

B

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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MPP Algorithm: Execution

o W-=(2,4), B-=(3,4)
o V,=(1,4)
o V,=(3,3) W
e Condition [C]
e sgn(V B.V3) <0
o V,=(3,4) B
o W-=B-=(3,4)
e Next vertex V,=(3,3)

2
ERD
i Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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MPP Algorithm: Execution

o W-=B-=(3,4)
o V,=(3,4)

o V,=(3,3) W

e Condition [B]

o Wc=V,=(3,3)
e Next vertex V:=(4,3) B

r%. \

o sgn(V W, V,)=0 &
o sgn(V_B.V,)=0

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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MPP Algorithm: Execution

o V,=(3,4)

o W-=(3,3)

o B-=(3,4)

o V:=(4,3) B

e Condition [A]

e sgn(V_W_.Vsg) >0

V|, =W; =(3,3)
We=Bc=V,
Next vertex:

s Vs=(4,3) B

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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MPP Algorithm: Execution

o W-=B;=V_=(3,3)

o V;=(4,3) B

e Condition [B]

o sgn(V_W,.Vg)=0

e sgn(V_B.Vg)=0

o B:=(4,3)

o Next vertex V,=(4,2) W

® Images taken from Gonzalez & Woods, Digital Image Processing (2002)
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MPP Algorithm: Execution

o Wc=(3,3), Bc=(4,3) T ]
¢ V,=(3,3) 1

o V,=(4,2) W

e Condition [C]

e sgn(V_B.V;) <0
o V,=B:=(4,3)

o Wo=B:=V_

o Next vertex Vg= (4,2)

® Images taken from Gonzalez & Woods, Digital Image Processing (2002)
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MPP Algorithm: Execution

e W-=(4,3), Bo=(4,3)
o V,=(4,3)

o Vo=(4,2)w

e Condition [B]

sgn(V W Vg)=0
sgn(V B Vs)=0
Wc=(4,2)

Next vertex Vg= (4,1)
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MPP Algorithm: Execution

o W-=(4,2), Bc=(4,3)
o V,=(4,3)

o Vo=(4,1) W

e Condition [B]

sgn(V_ . W.Vy)=0
sgn(V|, B, Vg)=0
We=(4,1)

Next vertex V5= (5,1)
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MPP Algorithm: Execution

o W-=(4,1), Bc=(4,3)
o V,=(4,3)

o Vo=(5,1) W

e Condition [A]

sgn(V, W.V;0) > 0
Vi =W.=4,1)W
We=Bc= (4,1)

Next vertex V1= (5,1)
And so on ..

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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MPP : Example

e Image of size
566x566

e 3-connected
boundary (1900
points)

e Of different cell size:
2,3,4,6,8, 16 & 32
o # of Vertices:

206, 160, 127,92,
66, 32 & 13.

84

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008



MPP : Example

Input image




P Bhowmick, BB Bhattacharya - IEEE TPAMI, 2007

Digital curve and straight segments

e Digital Curve (DC): A DC C is an ordered sequence of grid
points (representable by chain codes) such that each point
(excepting the first one) in C is a neighbor of its predecessor
in the sequence.

e Irreducible Digital Curve: A DC C is said to be irreducible
if and only if the removal of any grid point in C makes C

disconnected. 012 3 4 5
1.0

VN
§ 5 I/
o3 ;

4 5

A U A W DN =0

86

An example of DC and irreducible DC.


https://scholar.google.com/scholar?oi=bibs&cluster=6240645547101005551&btnI=1&hl=en

P Bhowmick, BB Bhattacharya - IEEE TPAMI, 2007

Chain code representations:
Examples

00 1 2 3 4 5 00 1 2 3 4 5 00 1 2 3 4 5
1 .0 1.0 ) 0
1 >0 1 o >0 1 * >0
NN, s N o S
S e S e 2 | 5
3 2 1 3 5 3 5 3 5
403 62 403 GIP 40/3( 1 GI
4 0 WNr'd YT X
5 o< o 5 *<o 5 (S
5 7 2 5 2 5 GI 4~ %
6 6 6
(a) (b) (c) (d)

Chain codes and their enumeration for defining DC. (a) Chain codes in 8-
neighborhood connectivity. (b) (1, 2)10756543.
(c) (1, 2)10756543(3, 4)76. (d) (2, 1)0756543121
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https://scholar.google.com/scholar?oi=bibs&cluster=6240645547101005551&btnI=1&hl=en

Digital Straight Line Segments
(DSS)

e Let p, q be points of the digital picture subset S, and let pq
denote the (real) line segment between p and q.

e pq lies near S if, for any (real) point (x,y) of pq, there exists a
(lattice) point (i,j) of S such that max {|i - x |,|j - y|} < l.

e S has the chord property if, for every p, q in S, the chord pq
lies near S..

q

S pq lies near §'if for any v there exists u

and such that max(Ax,Ay)<1.
P

AZRIEL ROSENFELD, Digital Straight Line Segments. IEEE TRANSACTIONS  ss
ON COMPUTERS, VOL. c-23, NO. 12, DECEMBER 1974, 1264-1268.




Digital Straight Line Segments
(DSS)

o A digital straight line segment (DSS) is the digitization of a
straight line segment.

e A DSS is an irreducible DC.

o A DC'is the digitization of a straight line segment if and only
if it has the chord property .

AZRIEL ROSENFELD, Digital Straight Line Segments. IEEE TRANSACTIONS 9
ON COMPUTERS, VOL. c-23, NO. 12, DECEMBER 1974, 1264-1268.




P Bhowmick, BB Bhattacharya - IEEE TPAMI, 2007

DSS characterization

e R1: The runs have at most two directions, differing by 45 degrees,
and, for one of these directions, the run length must be 1.
o At most two types of elements and they differ only by unity, modulo eight.

e One of the two element values always occurs singly.

e R2: The runs can have only two lengths: consecutive integers.

e Successive occurrences of the element occurring singly are as uniformly
spaced as possible.

e R3: One of the run lengths can occur only once at a time.

e R4: For the run length that occurs in runs, these runs can
themselves have only two lengths p and p+1, which are consecutive
integers, and so on.

o FExcept run lengths at two extreme ends (landr, [, r < (p+1))

AZRIEL ROSENFELD, Digital Straight Line Segments. IEEE TRANSACTIONS o0
ON COMPUTERS, VOL. c-23, NO. 12, DECEMBER 1974, 1264-1268.



https://scholar.google.com/scholar?oi=bibs&cluster=6240645547101005551&btnI=1&hl=en

3 1
An example of a DSS 5 7

e Singular element (s) : 1
e Non singular element (n): 0
e Parameters: n, s, [, r, p. L
| ,,#+.._
| M‘ 5
| 00000 4+
4

S

0410°10410°10410°
[=4, r=5, p=4

91
P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness

2L Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007




Digital curve segmented by
DSS’s

e Segments shown with alternate black and grey fragments.
e Of small lengths.
e Too many fragmentation.

- -
,;'_,-:’.-""
_-F‘-
- .-"-"'-..
P

92
P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness

LBL Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007




Approximate DSS (ADSS)

e Used R1
e Modified R2

e Run lengths of non-singly occurred (n) element may vary more than
unity, depending on the minimum length (p).

e But dropped R3 and R4

o To allow longer fragments of DC approximating a straight line
segment.

e DSS is also accepted in the criteria of ADSS

e New Parameters: Run length interval parameters [p,q]
excepting / and r.

e Other hyperparameters: Tolerances
o gp<d=L(p+1)2],andl-p, rp<e=L (p+1)/2]

Integer computation

ele\t 93
\sfe P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness

LBL Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007




P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007

Not DSS but ADSS

L -

®
yov T I adacdanian
I“‘% 3 .Z‘? 4 l=41 r=5ap=4a q=5
4"”" l T 5

041051051041 04105 Runlength seq: 455445

e

Both having non-singular occurrence

lllll

___eecese
A vryyyilllll,
cqw‘s 5 ’
‘?Z**”Eﬁ' 4T = T [=4, r=4, p=4, q=5

041051041 051 051 051 0% Run length seq: 4545554

Run lengths of 5 nonconsecutive 1 &3




P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007

Not ADSS

.. ‘“JOQ&,“ZT 54# l=4, I”=5,p=1, q=8
eeeeee®® g
_a-M =+ 1 > oL Yo | =

A g-p > L (p+1)
I-p>L (p+t1)/2 1=1
r-p > L (p+1)/2 1 =1

0410°10'10810410°

ot
||‘|’\ | - m,rll l=11,r=1,p=1,q=2
Cessssssssnes®s® 2
[ | [

0110210210110110t P> LEr2I=1




P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007

Extraction of a sequence of ADSS
from a DC

e Start from the first point by including it as a vertex of the
first ADSS.

e Extract parameters /, n, and s
e [: leftmost run length of non-singularly occurring element,
e n: non-singularly occurring element, and

e s non-singularly occurring element.

e Compute runs of # till it breaks conditions of ADSS.

e Include the point before the breaking condition emerges in
the sequence of ADSS in the DC.

e Repeat above steps from the extraction of parameters and

continue till the end of DC.
A linear time algorithm
96




P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007

Example

.f
— ——
J ._-
- "

DSS

ADSS
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P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007

Polygonization / Polylineation

e Input: A sequence of ADSS.
e Output: Vertices of polygon.
e Algo:

o Merge consecutive sequences following an error criteria.

Cumulative (Max) area of triangles formed by end points of the ADSS
and the line segment of the merged segment should remain within a
fraction of maximum iso-thetic distance of the merged line segment.

o Represent merged segments as a straight line segment with start
and end points of the start and end ADSS of the sequence.

e Continue till all the ADSS’s are covered.

2(X2’y2) _
p1(x1, diso(P,q) =max{|xe-xs|,|ye-ys|}

/q(xe,ye)

p(xs,ys) Cumulative area=App1q+App2q < T diso(P,q)




P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007

A few results

input
T=2
T=26




P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007

Another example

(a) input set of DC. (b)
ADSS. (c¢) C,,, 1= 2.
(d) Crax © T =2. () Coum
t=8. () C, > T=8.

100



Polygonal approximation by
merging

1. Merge points along boundary until LSE of line fit
exceeds a threshold. Output a line (side of
polygon) with parameters of LSE

2. Repeat Step 1 as long as there are points on the
boundary

3. Intersections of line segments give vertices

Disadvantage
May not produce vertices at inflection points as ‘long’
consume these ‘outlier’ points within the threshold.

101

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur




Polygonal approximation by
splitting

e Boundary into two parts using extreme points.

Diameter for closed contour providing two points.
Most distant point from the straight line connecting two end
points of an open contour segment.
e Start with the closed contour and determine two
extreme points.
Output two open segments in counter-clockwise order.

e Recursively process every open segment and form a
vertex at each stage connecting end points of open
contours
% e till the max. dist. less than a threshold.

102




Polygonal approximation by
splitting

| @ | g
d . b d b

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008
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Skeletonization: Medial Axis
Transform (MAT)

e MAT of region R with border B

e Foreach point pin R, find its closest neighbor in B
“Closest” use the concept of distance - often Euclidean
e If p has more than one such neighbor, it belongs to the
Medial Axis (Skeleton) of R

e Intuitively MAT is defined by Grassfire analogy

o e e e — — — —

104

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Skeletonization: Medial Axis
Transform (MAT)

e Intuitive approach is computationally expensive as
It needs the computation of the distance from
every interior point to every point on the boundary
of a region

e Alternate approach is to remove non-MAT points

e Typical fast (thinning) algorithms iteratively delete
boundary points of a region provided the deletion:
Does not remove the end points
Does not break connectivity
Does not cause excessive erosion of the region

105

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur




Skeletonization: Thinning
Algorithm

e Border / Contour Point: An object (region) point (1) with at
least one background (0) neighbor

o Step 1
Repeat for all contour points
Flag contour points for deletion by Condition 1
Remove all flagged points (change 1 - 0)
o Step 2
Repeat for all contour points
Flag contour points for deletion by Condition 2
Remove all flagged points (change 1 - 0)

Repeat Steps 1 & 2 till no deletion is possible 06
Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur




Skeletonization: Thinning | » » =

Algorithm ps P1 P4

P17 Peé Ps

e Condition 1
9 25N(P1)=6  N(p,) =Non-zero neighbors of
o T(py) =1 P1= Po+Pa+PatPs+Ps*Pr+Pe+Pg
©) P2-P4-Ps=0 T(p;) =Number of 0-1
d)  P4-Pe-Ps=0 transitions in the sequence
® Condition 2 P2/P3/P4,Ps5/P6/P7,Psr Pa,P2
n 2<N(py) <6 U 0 :
5. T(py) =1 | ; N(p,)=4
C. Dy.Ps.Pe=0 .
P2-P4-Psg T(p1)=3
D. P2.Pe-Ps=0 | 0 |

107

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Skeletonization: Thinning | » » =

Algorithm ps P1 P4

P17 Peé Ps

e Condition 1
9 25N(P1)=6  N(p,) =Non-zero neighbors of
o T(py) =1 P1= Po+Pa+PatPs+Ps*Pr+Pe+Pg
©) P2-P4-Ps=0 T(p;) =Number of 0-1
d)  P4-Pe-Ps=0 transitions in the sequence
® Condition 2 P2/P3/P4,Ps5/P6/P7,Psr Pa,P2
n 2<N(py) <6 U 0 :
5. T(py) =1 | ; N(p,)=4
C. Dy.Ps.Pe=0 .
P2-P4-Psg T(p1)=3
D. P2.Pe-Ps=0 | 0 |
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Skeletonization: Thinning
Algorithm

o If p, satisfies [a,b,c,d] (or [A,B,C,D]) it
should be safe to remove it (flag it for
removal) while preserving the structure of
the skeleton intact

Note: The actual removal is lazy so that the

order of checking for these conditions does not
Impact the actual application

109

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur




Skeletonization: Thinning
Algorithm

O Interpretations of conditions

= [a, A]: Guard Condition for
Protecting end point
Limiting excessive erosion

= [b, B]: Guard Condition for

Preserving connectivity

= [c, C]/[d, D]: Candidate Condition for
Border points
Corner points

110
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Skeletonization: Thinning
Algorithm

O How do the conditions guarantee a

MAT? 0 0

m [a, A] 2 < N(p4) < 6 is violated if p;
has

1 neighbor - End point of a stroke

7/ neighbors = Causes excessive
erosion
N(p+)

= [b, B] T(py) = 1is violated if p; is

On a 1-pixel thick stroke (bridge) 2> T(p1)=
Preserve connectivity

1 P1

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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Skeletonization: Thinning
Algorithm

P9 P2 Ps3

e [c,d] p,.ps.ps=0 and p,.ps.ps=0 are satisfied

simultaneously by minimal set of values: ps | P | Pa

p,=0 (East boundary point) or
Ps=0 (South boundary point) or

P7 Peé Ps

p,=0 and ps=0 (NW corner point)
e [C,D] psy.ps-ps=0 and p,.pgs.ps=0 are satisfied
simultaneously by minimal set of values:
p,=0 (North boundary point) or
ps=0 (West boundary point) or
p,=0 andpg=0 (SE corner point)
e NE corner point (p,=0 and p,=0) satisfy [c,d] and [C,D]

SW corner point (pg=0 and pg=0) satisfy [c,d] and [C,D],,,
Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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Thinning : Example

Output

Input image




Morphological Operations

e Operations on binary images Examples of SE
with a structuring element to
perform morphological E :H:

(structural) changes or
extract the features Points conforming

to ‘Fit’ ti
e Structural element (SE): O Fit operations

» a set of points in the digital grid [Bj
with a reference integral
pixels in output

coordinate system.
O image if check is:

e Performs ‘Hit’ or ‘Fit’ operation SE fits
at any point in the digital grid.

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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Reflection and Translation

B={w|w=-b, forbeB
(A).={c|lc=a+z, foraecA}

Reflection

Translation

(B): 116
Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur




Basic morphological
operations

m Erosion w Keep general shape

but smooth with
respect to object /

m Dilation m background

m combine to
= Opening s Object
= Closing » background

117
Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur




Erosion

m Does the structuring element fit the set?

m erosion of a set A by structuring element B: all z in
A such that B is in A when origin of B=z

AG B =1{z|(B), < 4;
AS B = {z|(B). N A° = ®}
m shrink the object

118
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Erosion

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Erosion

SE= I

120

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur




Erosion Example 1

A A A

Original Erosion by 3*3 Erosion by 5*5
image square structuring square structuring
element element

Watch out: In these examples a 1 refers to a black pixel!

121

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Erosion: Example

Aaaa PR DX E g FORTTyRICL Pl
DTy g RoSiTE Uit WX Yy 2 P o T " 5T 10, o X Yy Z

ABCOSFCHITRIMNUO PORSTUVUXYZ AECOETCHITRIM U O PRRETUVUWNYZ
'«M”W%AW#WWWZ G@a bl dede f 997y 1 kimeroe sy s vy

Input image Eroded image




Erosion Example 2

Original After
- erosion
image
J with a
disc of
radius 10
After After
erosion erosion
with a with a
disc of disc of
radius 5 radius 20 .

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur

What Is Erosion For?
Erosion can split apart joined objects

2

Erosion can strip away extrusions

@ B

Watch out: Erosion shrinks objects! 124




Dilation

e Does the structuring element hit the set?

e dilation of a set A by structuring element B: all z in
A such that B hits A when origin of B=z

ADB =4z
ADB =4z

e grows the object

(B). N A+ D}
[(B). N A] < A}

125
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Dilation

SE=

126

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Dilation

se- [

XXX

XD DX

I.» DX DX

HERRER N

HEEERERREEN
HEEEERERREN 4...
HEEEEEEEEEEEEEE

127
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Dilation Example

Original image  Dilation by 3*3  Dilation by 5*5

square square
structuring structuring
element element

Watch out: In these examples a 1 refers to a black pixel!

128
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Dilation: Example

A B DR eIy PTGy R
QBN RSTH UM WY Ze

ABCOEFCHIIRIMNUD PRRSTUVUWXYZ
aaalBelef gy [Bkimnspp priticwryz

Input image

Viritage Typepace
Ao B e DR g TN T e

ABCOSTENTIIRIMNO PIRS TUHVHXYZ
B cltef gy Tlctmreagy s fwwicyyr

Dilated Image



Dilation : Bridging gaps

Historicaliy, certain computer
programs were written using
oniy two digits rather than
four to define the applicable
year., Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the yEar

Historically, certain computer
programs were written using
oniy two digits rather than
four to define the applicable
year. Accordingly, thea
company's software may
recognize & date using "00°
as 1900 rather than the

&

2000,

a ¢
b

FIGURE 9.5

(a) Sample text of

poor resolution

with broken

characters

(magnified view).

(b) Structuring

element.

(¢) Dilation of (a)

by (b). Broken

segments were

joined.
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What Is Dilation For?

Dilation can repair breaks

Dilation can repair intrusions

2« Watch out: Dilation enlarges objects
28 Courtesy: P.P. Das, Professor, Dept. of CSE, [IT Kharagpur
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Useful

m Erosion
= removal of structures of certain shape and size,
given by SE
m Dilation

= filling of holes of certain shape and size, given
by SE

132

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Duality

e Erosion and Dilation are duals of each other with
respect to set complementation and reflection

(ASB) = A° ® B
(A®B) = A°OB

133

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



5 basic structuring elements

B B
I 11
R I . .
| B'i=1,2,3.4 [ [x] B'i=1,2.....8
“1*] (rotate 907) (rotate 457)
11 v
X . .
B'i=1.2.734 B'i=56.78
" (rotate 907) (rotate 907)
\%

FIGURE 9.26 Five basic types of structuring elements used for binary morphologyv. The
origin of each element is at its center and the s indicate “don’t care™ values.
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Combining erosion and
dilation

s WANTED:
= remove structures / fill holes
= without affecting remaining parts

m SOLUTION:
= combine erosion and dilation
= (using same SE)
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Erosion followed by dilation:
eliminating irrelevant detail

a:ihiie

FIGURE 9.7 (a) Image of squares of size 1.3,5,7.9, and 15 pixels on the side. (b) Erosion of (a) with a square
structuring element of 17s, 13 pixels on the side. (¢) Dilation of (b) with the same structuring element.

structuring element B = 13x13 pixels, each set to 1.
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Opening
erosion followed by dilation, denoted o
AoB=(A6B)®B

e eliminates protrusions
e breaks necks
e smoothes contour
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ing

Open

ASB  AcB
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ing

Open

139

ASB  AcB

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Opening Example

Original
Image

Image
After
Opening
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Closing

dilation followed by erosion, denoted °

AeB=(ADB)e B

e smooth contour

e fuse narrow breaks and long thin gulfs
e eliminate small holes

e fill gaps in the contour
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ing

Clos
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ing

Clos

BIKVAII.

ASB A B
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Closing Example

Original
Image

Image
After
Closing
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Properties

Opening

(i) A°Bis asubset (subimage) of A

(ii) If Cisasubset of D, then C °B is a subset of D °B
(iii) (A°B)°B=A°B

Closing

(i) A is asubset (subimage) of AeB

(ii) If Cis asubset of D, then C B is a subset of D «B
(iii) (A eB)eB =A B

.. Note: repeated openings/closings has no effect!
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Duality

e Opening and Closing are duals of each other with
respect to set complementation and reflection

(Ae B) = A o B
(AoB) = A e B
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Hit-or-Miss Transformation ®
(HMT)
m find location of one shape among a set of shapes
m "template matching”

= o T EE

m composite SE: object part (B1) and background
part (B2)
m does B1 fits the object while, simultaneously,

B2 misses the object, i.e., fits the background?
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Hit-or-Miss Transformation

A®B = (AOB,) N[AOB,]

A®B = (A0 B)—(A® B,)
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Hit-or-Miss transformation

Searching for white pixels, that do not
have 4-connected neighboring pixels.

-
..I-.+ o ..I..+
m 'm Bl x 'm
Original image Erosion with B1
(white pixels)

w4 2 iy Bl

Complement Erosion with B2
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Application: Boundary
Extraction

ab —Origin

¢ d ‘IL
FIGURE 9.13 (a) Set
A. (b) Structuring B
element B.(¢c) A A

eroded by B.

(d) Boundary. given
by the set
difference between
A and 1ts erosion.

ASB B(A)

B(A) = A—(AeB)
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Boundary / Contour
Extraction

ab

FIGURE 9.14

(a) A simple
binary image, with
I's represented in
white. (b) Result
of using

Eq. (9.5-1) with
the structuring
element in

Fig. 9.13(b).
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Application: Hole Filling
The key equation for region filling is

X, =(X,_ ®B) A k=123...
Where X, contains a starting point inside in each

hole hole, B is a symmetric structuring element and
Ac is the complement of A

This equation is applied repeatedly until X, is equal
to X 4

Finally, union of the result with 4 is performed.
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Region Filling
X, =(X,,,©@B)nA4A" k=123,.

abc
deeiiE
ghi

FIGURE 9.15

:Zc;ggio?/t;illing. — Origin
a) Set A.

(b) Complement

of A.

(¢) Structuring

element B.

(d) Initial point
inside the
boundary.
(e)—(h) Various
steps of

Eq. (9.5-2).

(1) Final result
[union of (a) and
(h)].
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Application: Extraction of
connected components

e Y. A connected component in a set A.
e p: ApointinY.

e For extracting connected component Y perform
the following iteratively with X,=p:

Xk —_ (Xk—l @ B)nA, k — 1,2,3
Terminates when X,=X,_, to provide Y.
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Connected components

a
n|@ |l
clifliz

FIGURE 9.17 Extracting connected components. (a) Structuring element. (b) Array
° containing a set with one connected component. (c) Initial array containing a 1 in the
region of the connected component. (d)—(g) Various steps in the iteration of Eq. (9.5-3).

X X3 Xs

X, = (X, ®B)NA k=1,2,3,...
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Application: Convex Hull

e Convex Set

A set Ais said to be convex if the straight
line segment joining any two points in A
lies entirely within A.

e Convex Hull: H = CH(S)
Minimal convex superset of S
e Continuous Algorithm
e Convex Deficiency: H-S
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Approximate solution!
Convex Hull PP

e B i=1,2,3,4 : Four structuring elements

e Perform the following iterative construction for
each structuring element to provide D' at
convergence.

Xt =(Xi_, ® BHYUA,i =1,2,3,and 4;k = 1,2,3, ...

4
The convex hull of 4: C(4) = U D!
i=1

Constraints: Length of vertical and horizontal to be less than 3.
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Convex hull

a x| = x| = MEIE:
b C d x X x x x x
e f g X | X B X | X v
h B! B B} B*
o FIGURE 9.IQ
. (a) Structuring
Q elements. (b) Set
~ A. (c)—(T) Results
= of convergence
a with the
g structuring
o elements shown
‘2—) in (a). (g) Convex
= hull.v(h)(-_on\-'c.v‘x x!l=a Xl« X
hull showing the N
£ . D
=i contribution of
© each structuring
(=) element.
()]
)
o
8
=
=]
0
© X3 X3 C(A)
& II
)
= .
S 75!
Y 7z,
c 7 B2
< N\ B3
) R
= I 5
()
D’l
©
£
(=1
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Convex Hull

, %%
N~

N 7
NN

N7

FIGURE 9.20 Result of limiting growth of convex hull algorithm to the maximum di-
mensions of the original set of points along the vertical and horizontal directions.
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Thinning
e The thinning of a set 4 by a structuring element B.

A®B =A—- (A® B)
e A more useful expression using an alternate
sequence of structuring elements till convergence.

{B} = {B' B?, ....,B"}
Where Bi is a rotated version of B,

A®(B} = ((- ((A®B")®B?) - )®B")

160
Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur




1 x x x X x x
x| ¥ % x| [x
x x * X x x
Talallg A S
g rOrigin
k]
A A® B! A® B?
A® B} A® B A® B

= A—(A®B)
= AN (ABB)*

a FIGURE 9.21 (a) Sequence of rotated structuring elements used for thinning. (b) Set A.

A® B4.5.6.7.8. 12,3

b ¢ d (c) Result of thinning with the first element. (d)—(i) Results of thinning with the next

e f & sevenelements (there was no change between the seventh and eighth elements). (j) Re-

h i J sultofusing the first element again (there were no changes for the next two elements).
k1 (k) Result after convergence. (1) Conversion to m-connectivity.

idUai
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Thinning

- HU- 1034 K
~ HU- 1034 K

Iteration 3 ]r U ] . 3 A K
|
! a4~ . y
lteration 5 J I \ -<J / . / a
r "/ AR /' L;+ | ‘
!
- - /ﬁ\J .“j\ ‘ /"‘f’
lteration 7 ] I </ e
r v AR J:' L_|r | “-\‘ ‘
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Thickening
e Thickening morphological dual of thinning.
AOB = AU(A ® B)

The SE has the same form but 1’s (foreground) and O’s
(background) interchanged.

e As in thinning, thickening also performed using an
alternate sequence of rotated SEs till convergence.

AO(B} = (- ((A©B)@B2) - )OB")
e Equivalent to thinning background of the thinned
pattern and then taking the complement.

The thinned background forms the boundary of the
thickened object.
Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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Thickening
A®B = AU (ABB)

ab
c d
¢

FIGURE 9.22 (a) Set A. (b) Complement of A. (¢) Result of thinning the complement of
A. (d) Thickened set obtained by complementing (c). (¢) Final result, with no discon-
nected points 164
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Skeletons

¥ Skeleton, S(A), of a set A

(a) If zis a point of S(A) and (D), is the largest disk centered at
z and contained in A, one cannot find a larger disk
containing (D), and included in A. The disk (D), is called a
maximum disk

(b) The disk (D), touches the boundary of A at two or more
different places

* An inner point belongs  sasi: \/ @ Vo,

to the skeleton if it has i \
at least two cloest L o
boundary points
<keletan < /\ /@ < -k\\ \:—\.\» . v'_/'/j_\_\_,
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Skeletons )
e Morphological Skeleton: S(A)=U Sk(A)

k=0

o Where, Sx(A)=(AOkB)- (4 e; kB) o B

k successive erosion.
o kis the last iterative step before 4 erodes to an empty set.

e The set A can be reconstructed by
K

A= S, (A)DkB

G )@E)

k successive dilation.
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K K
p ASKkB |(ASkB)-B|  Si(A) USg(A) | Sk(A)® kB | US(A)EkB
k=0 k=0

] ] (]

These pixels
wrongly shown | | . . - . W
as object points
after the erosion [T
with radius 1. —]

S(A) A

FIGURE 9.24 Implementation of Egs. (9.5-11) through (9.5-15). The original set is at the top left,
and its morphological skeleton is at the bottom of the fourth column. The reconstructed set is at
the bottom of the sixth column.
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Summary
e Binary or Bilevel images: f: Z2 (or Z3or Z" )-> {0/1}
Background (0) and Foreground or Object Point (1)
e Neighbors, Connectivity, Paths and Distances
2D: 4 /8 -neighbors 3D: 6/ 18/ 26 -neighbors.
Multiple paths of shortest distances exist.

Jordan’s Curve Theorem breaks.

4-8 or (8-4) Grids for complementary adjacency in
background and foreground.

Component Labeling: Chamfering (Linear Time)
Different types of distances
4 (/8)-Neighbor in 2D and 6(/18/26)-Neighbor in 3D
Octagonal distances
Weighted distances




Summary

Distance Transform
Chamfering Algorithm for Additive Distances

Medial Axis Transform
Applications: Transformation, Cross-sections, Skeleton

Shape representation.
Contour following, Chain Codes

Polygonization

Minimum-perimeter polygon (MPP), ADSS algorithm,
Merging and Splitting

Skeletonization: Thinning
Morphological Operations
Dilation, Erosion, Opening, Closing, Hit-&-Mis Transform

Applications: Smoothing, Convex Hull, Region Filling,
Thinning, Connected Component Extraction, Thinning






