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Discrete Space and Tiling
l Discrete Space

l Integral coordinate space: Zn 

l Digital grid
l A finite subset of integral coordinate space: Gn ⊂ Zn 

l represented by a n-D  rectangular array

l Tessellation or Tiling
l 2D: A bounded region of a specific shape that fills the 

plane with no overlaps and no gaps
l Center of the region lies at a grid point

l Regular tiling: All the space filling units are similar and 
of the shape of a regular polygon
l Generalization to n-D regular hyper-polyhedron
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Regular Archimedean Tiling
l In 2-D: 3

l In 3-D: 1 (Rectangular)

l In 4-D: 3

l In n-D, n>4: 1 (Rectangular)
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Triangular Hexagonal Rectangular

Our focus: Digital geometry in  rectangular grid !
2-D or 3-D 

J. Mukhopadhyay, et al (2013), "Digital Geometry 
in Image Processing", CRC Press, April. 



Why digital geometry? 

l Digital Distance Function ( different domain and range) 
d: Zn x Zn  P (or R)

l Finite neighbourhood.
l Things are different (due to digitization.)

 



Motivation

l Exact analysis: As they are in the digital space.

l Analysis of approximation: Error bounds from Euclidean 
measures, better understanding in correlating corresponding 
objects and shapes.

l Efficient computation: Finite neighbourhood and integer 
arithmetic.

l Empirical Techniques: Finite enumeration.



Distance Function
l Distance Function:

 d: Rn x Rn  R

l Digital Distance Function:

 d: Zn x Zn  P (or R)

l A function of two points in a space measuring their 
separation or dissimilarity.
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Neighbourhood 

p

ε ε-Neighbour: 
a point q is in N(p), 
iff d(p,q) ≤ ε. 

Desirable: Compact and bounded.



Path

p q
1 2 3

n

Length of the path ≈n. ε
Desirable feature: 
Distance = Length of the shortest Path.



Metric & Conditions:

i. d (u , v) = 0 iff u = v

ii. d (u , v) = d (v , u)

iii. d (u , v) + d (u , w) > d (u , w) ,

    " u , v , w Î Rn (Zn)

N(x;d) is a Norm of d if
N(x;d) = d(x, 0) where x = u – v

d is defined for 
every pair of points 
in the space.



Why a metric?
l A bounded and compact neighbourhood around a 

point in the space.

l There exists an optimal path between two points, 
such that the length of this path is given by the 
distance function. 



Neighbourhood structure: 
Examples L1 norm

L2 norm

L∞ norm

Desirable features:
Isotropy and symmetry: 
Isotropic in all directions. 
Uniformity: 
Identical at all points of the 
space.
Convexity: 
In the sense of Euclidean 
geometry.
Self-similar: 
Similar structure at varying 
resolution.

Acknowledgement: Figure taken  from http://en.wikipedia.org/wiki/File:Vector_norms.svg



Geometry built on distances
l Shortest Paths in Euclidean Space

l Straight Lines
l Geodesics on Earth
l Parallel Lines 

l Equidistant Ever
l Circle 

l Trajectory of a point equidistant from Center
l Least Perimeter with Largest Area

l Conics are distance defined. 



Neighbors of Pixels in 2-D
l P = (x,y) 

l 4–Neighbours 
l N4(P) = {(x–1,y), (x+1,y) , (x,y–1), (x,y+1)}

l Diagonal–Neighbours
l ND(P) = {(x–1,y–1), (x–1,y+1) , (x+1,y–1), (x+1,y+1)}

l 8–Neighbours
l N8(P) = N4(P) U ND(P)
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4-neighbors 8-neighbors

For a digital 
distance:
A neighbor is at 
distance 1.



Digital Distances in 2D

For u, vÎZ2 and x = |u – v|=(x1, x2),

Cityblock:     
     d4(u, v) = x1+x2 ,
Chessboard: 
      d8(u, v) = max(x1, x2),
Octagonal (uses non-uniform alternating neighborhoods):
doct(u, v) = max(x1, x2, é2(x1 + x2)/3ù) .

Rosenfeld and Pfaltz ’68



Octagonal Distance

2 2 2
2 2 1 2 2
2 1 * 1 2
2 2 1 2 2
2 2 2

Neighborhood sequence {1,2}
d(a,b) = 10

a

b

doct(u, v) = max(x1, x2, é2(x1 + x2)/3ù)



Weighted Distance

p

a

aa

a

bb

bb

d<a,b>(u, v) = a.max(x1 , x2 )+ (b-a). min(x1 , x2 )

Metric Conditions:
a ≤ b, and b ≤ 2a

For u, vÎZ2 and x = |u – v|=(x1, x2),



Weighted Distance: An example 
of a path

p(0,0)

q(7,5)

d<a,b>(p,q)=5b+2a

e.g.,
For a=1 and  b=1.4,
d<1,2>(p,q)=9.

Euclidean distance:
de(p,q)= 8.6



Circle of a weighted distance

<1, √2>



Neighbors of Voxels in 3-D
l P = (x,y,z) 

l 6–Neighbors (Face), 
l 18–Neighbors (Edge) & 

l 26–Neighbors (Corner)

20

6–Neighbors 18–Neighbors 26–Neighbors

J. Mukhopadhyay, et al (2013), "Digital Geometry in 
Image Processing", CRC Press, April. 



Digital Distances in 3D

For u, v Î Z3 and x = |u – v|,

d6(u, v) = x1 + x2 + x3, (grid distance)
d18(u, v) = max(x1, x2, x3, é(x1 + x2 + x3)/2ù)
d26(u, v) = max(x1, x2, x3) (lattice distance).

Yamashita and Ibaraki ‘86

Like 2D, in 3D also Octagonal and 
Weighted distances are defined.



Digital discs

RR
2D

3D

d6 d26d18

( ) ( ){ }RxOdxROB £= ,;

d4 d8



Vertices of octagonal discs:

{ }
{ } R) R, R,of(n permutatio :    :3D

R)R,of(n permutatio :     :2D

321
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Octagonal Digital Circles

{ }2,1,1{ }2,1 { }2,1,1,1



Octagonal Digital Spheres

{ }2,1,1 { }3,2,1{ }3,1,1



Binary Image
l f : Gn à {0,1}
l Foreground and background

l p ∈Gn is in foreground, iff f(p)=1, otherwise it is in 
background.
l Foreground consists of object points.

§ S : foreground

§ Sc = Gn –S : background

l Adjacent neighbor
l A neighboring foreground pixel  

l 2D: 4 / 8 - adjacency

l 3D: 6 /18 / 26 - adjacency
26



Path
l A Sequence of distinct pixels satisfying pair-wise adjacency

l Length of the path 

l Number of adjacencies
l One less than the number of points

l Shortest Path between two pixels can be non-unique

l Closed Path: Same Start and End Points

27

2-D 3-D



Connectivity
l Two pixels are Connected if there exists a path 

between them.

l Pixels connected to a given pixel form a 
Connected Component.

l A Region is a Connected Set of foreground points.

l Foreground & Background
l Foreground: Union of all disjoint Regions in an Image

l Background: Complement of Foreground

l Boundary or Border
l Inner Border: Set of points in R adjacent to complement of R

l Outer Border: Set of points in complement of R adjacent to R 28



4– and 8–Neighbors Dichotomy
l Jordan’s Curve Theorem

l Every simple closed curve divides the 
plane into an "interior" region bounded by 
the curve and an "exterior" region 
containing all far away points
§ Any continuous path connecting a point of one 

region to a point of the other intersects that loop 
somewhere. 

l Digital Jordan’s Curve Theorem
l Deviates from the theorem.
l Use alternate adjacency for interior / exterior

29



Limitation of Jordan’s curve 
theorem in digital space

30

(8,4) (4,8)
Three componentsA single component

Foreground points with similar configuration!

J. Mukhopadhyay, et al (2013), "Digital 
Geometry in Image Processing", CRC Press, 
April. 



Component labeling
l Form a graph with edges between neighboring 

foreground pixels.

l Compute connected components.
l Graph traversal algorithms

l Storage inefficient for large components

31

0 0
0 0

1 0
1 0

1 1
0 0

1 0
0 0



Two Scan Labeling 
l Use of two masks for 

l Forward scanning: Top to bottom and left to right

l Backward Scanning: Bottom to top and right to left

l Check the labels (a number) of neighbors at a foreground  point p
l If <no label> found, create new unique label

l Else assign the label of a neighbor.

l For multiple labels declare them equivalent and assign the 
lower numeral id.

32

p� p�

(a)�

(b)�

Chamfering!

For 8-adjacent 
connected 
component

J. Mukhopadhyay, et al (2013), "Digital Geometry 
in Image Processing", CRC Press, April. 



Distance Transforms (DT)
l Distance Transform: At every foreground pixel p 

(i.e. f(p)=1), it stores the distance of the pixel from 
the nearest background (f(.)=0) pixel. 

l For all pixels p of an image S, the DT algorithm 
computes:

l DT(S): Image of t(p)’s,  called the DT image.

33

t(p) = mink{d(p, qk): S(qk) = 0, 1 ≤ k ≤ |S|}



Distance Transforms for 
Binary Images (d4)

34

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  



Distance Transforms for 
Binary Images (d8)

35

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  



Distance Transforms Algorithms
l Brute Force Algorithm

l For every pixel in foreground F compute the distance to 
every pixel in background B and find the minima

l Let the image be of size n

l Let f = |F|, b = |B|, f + b = n
l Often f = O(n) and b = O(n)

l Number of distance computations = f.b = O(n2)
We need a better algorithm

36

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  



Chamfering Algorithm for 
Distance Transform
l Initialize all DT values to infinity.

l Perform two scans: Raster & Reverse Raster

l In every scan Chamfer with a mask
l At every pixel position, add the mask weight with the pixel 

covered and take the minimum

37

Computes DT for ‘additive’ 
distances

b = 1, a = 2: City Block 
b = 1, a = 1: Chess Board
b = 1, a = √2: Weighted
Complexity = O(n)

o

a b a

b

o

a b a

b

Forward Scanning 
From Left to Right 
and Top to Bottom

Backward Scanning 
From Right to Left  
and Bottom to Top

DT(o) = min (DT(Neighboring pixel) + local distance between them)

J. Mukhopadhyay, et al (2013), "Digital Geometry 
in Image Processing", CRC Press, April. 



Two pass chamfering algorithm 
to compute DT with d4

38

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  



Two pass chamfering algorithm 
to compute DT with d8

39

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  



Distance Transform: An 
example

Input image Output



DT: Properties -1
l [1] t(p) represents the radius of the largest disk 

centered at p and totally contained in F

41

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008 



DT: Properties -2
l If there is only one q ε B with t(p) = d(p, q):

l (a) an element p’ ε F exists such that the disk centered
at p’ totally contains the disk centered at p (disk B is 
totally included in disk A)

l (b) elements p’ ε F and q’ ε B exist such that d(p, q) = 
d(p’, q’) and p is adjacent to p’

42

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008 

(a) (b)



DT: Properties -3
l If there are two (or more) q, q’ ε B such that 

t(p) = d(p, q) = d(p, q’), then the disk centered
at p is a maximal disk in F and p is symmetric

43

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008 



Medial Axis Transform

A set of maximal blocks contained in  the pattern.



Computation of Medial Axis 
Transform

• Compute the distance transform.

• Compute local maxima in the 
distance transformed image.



Application of MAT in Image 
Analysis

• Geometric Transformation (Kumar et al ’96)
• Computation of Normals (Mukherjee et al ’02)
• Thinning of binary pattern (Costa ’00, Pudney ’98)
• Computation of cross-sections of 3D objects 

(Mukherjee et al ’00)
• Visualization of 3D objects (Mukherjee et al ’99, 

Prevost and Lucas ‘00)
• Image compression (Kumar et al ’95).
• Shape Description (Baja and Svensson ’02)



Thinning from Distance 
Transform 

Compute the set of Maximal Blocks.

Use them as anchor points while 
iteratively deleting boundary points 
preserving the topology.

Vincent ’91,  Ragnemalm ’93,  Svensson-Borgefors-Nystrom ’99



Normal Computation

l Normal at a point p computed by computing 
the resultant  vector from that point to the 
neighboring medial circles.

J. Mukhopadhyay, et al (2013), "Digital Geometry in 
Image Processing", CRC Press, April. 



Normal Computations: 
Examples

J. Mukhopadhyay, et al (2013), "Digital Geometry 
in Image Processing", CRC Press, April. 



Cross-sectioning

J. Mukhopadhyay, et al (2013), "Digital Geometry 
in Image Processing", CRC Press, April. 



Cross-sectioning with different 
distance functions.

J. Mukhopadhyay, et al (2013), "Digital Geometry 
in Image Processing", CRC Press, April. 



A set of objects for 
experimentation

J. Mukhopadhyay, et al (2013), "Digital Geometry 
in Image Processing", CRC Press, April. 



Cross-sectioning: Voxel data, 
MAT & Sphere Approx.

Voxel Data MAT Euclidean Sphere 
Approximation

J. Mukhopadhyay, et al (2013), "Digital Geometry 
in Image Processing", CRC Press, April. 



Shape representation in 2D
l Boundary (Border) Following

l Chain Codes

l Polygonal Approximation using Minimum-
Perimeter Polygons (MPP)

l Polygonal Approximation by Merge/Split

l Signatures

l Boundary Segments

l Skeletons

54

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Boundary (Contour) Following
l Boundary

l Good representation of an 
object shape 

l Requires less memory.

l Input:
l Border points

l A foreground (object) point 
which is m-adjacent to a 
background point in (m, n) 
grid.

l Output: 
l Ordered sequence of 

these points
55

An interior 
point

A border point

(8,4) Grid

J. Mukhopadhyay, et al (2013), "Digital Geometry 
in Image Processing", CRC Press, April. 



Contour following algorithm
l Start from the leftmost and topmost  border point p 

with its left neighboring background point q. Mark 
p visited.

l Perform clockwise search among 8-neighbors of q 
to get the first foreground point except the 
preceding border point . 
l If it is already visited 

l stop and output the sequence.

l Else 
l include it in the sequence, 

l mark it visited and 
l continue from the recently visited point in the same 

manner starting from the previous border point but 
excluding it from consideration .

56

T. Pavlidis. Algorithms for graphics and image processing. Computer
Science Press, Rockville, MD, 1982.

For anti-
clockwise 
contour, 
search in the 
anti-clockwise 
order.

Assumption: 
Simple 
contour (non 
intersecting)



Search order and sequence: 
An example

p�0�
p�9� ,�

q�0�

q�1� p�1�
p�2�

q�2�

p�3� q�3�
p�4�

 ,� q�4�

p�5�

q�5�

p�6� q�6�

p�7� q�7�

p�8�

q�8�

q�9�

(b)�

p�q�=�r�0�

r�1� r�2� r�3�

r�4�

r�5�r�6�r�7�

(a)�

The order of 
searching a 
foreground pixel in 
the neighborhood of 
a border pixel p with 
a background 
neighbor at q in an 
(8 , 4) digital grid. 

The sequence of pairs of 
border pixels (pi ; qi), where 
pi belongs to foreground, and
qi belongs to background, 
respectively, for the point set

The order follows 
clockwise movement 
starting from q

J. Mukhopadhyay, et al (2013), "Digital Geometry 
in Image Processing", CRC Press, April. 



Chain Codes
l Representing a boundary of a connected region

l Based on 4 or 8 connectivity of the segments 

l For every point code the direction of the next point

58
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Need for resampling
l The chain code of the same length as the 

perimeter of the object, in many cases too long

l Hence, re-sample the image to a lower resolution 
before calculating the code

l The re-sampling also reduces noise sensitivity

59

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Chain codes: Examples

60

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur

4-connected or 
8-connected.



Chain codes: various issues
l Starting Point (various options)

l Topmost, Leftmost point
l Context dependent choice
l Normalize by 

l Assuming the code to be circular (closed curve) and
l Choose the integer of minimum magnitude

l Rotation Invariance
l Use first difference of the chain code

l Obtained by counting the number of direction changes (in a 
counterclockwise direction) 

l For example, the first difference of the 4-direction chain code 
10103322 is 3133030.

l Use circular shifting for minimal representation
l Size Normalization

l Achieved by adjusting the size of the re-sampling grid. 
61

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Polygonal approximation
l Polygonal approximations

l Represent a boundary by straight line segments, and 
l A closed path becomes a polygon

l Number of straight line segments?
l Accuracy of the approximation
l Larger number of sides add noise 
l Small number of side result in coarse shapes

l Optimize for minimum number of sides 
l Constraint: Preserve the shape information

62

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Polygonal Approximation using 
Minimum-Perimeter Polygons
l Optimization involves Iterative Search

l Computationally Expensive
l Use: Approximate Optimization

l MPP: Minimum Perimeter Polygons

63

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



MPP Algorithm: intuition

64

Boundary of an object In the discrete grid MPP: Vertices from 
inner and outer walls

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  



Properties of MPP
l Size of the Cell è 

l Accuracy of Polygonal Approximation
l If size of a cell (dXd)= size of a pixel in the 

boundary è 
l Max error = √2d

l Use largest possible cells è
l Fewest number of vertices in MPP

65

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Properties of MPP
l Boundary: 

l 4-connected 
l straight-line segments

l Mark counterclockwise 
l Convex (90 deg turn) Vertices: White

l Concave (270 deg turn) Vertices: Black
l Mirror Vertex for every Concave Vertex

l An MPP vertex is
l Convex Vertex on Inner Wall or
l Mirror of Concave Vertex on Outer Wall

66

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



MPP Algorithm: Intuition

67

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  
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Properties of MPP
l MPP bounded by a simply 

connected cellular complex is not 
self-intersecting

l Every Convex vertex of MPP is a 
W vertex; but not every W vertex 
of a boundary is a vertex of MPP

l Every Mirrored Concave vertex of 
MPP is a B vertex; but not every B 
vertex of a boundary is a vertex of 
MPP

68

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur

Not a vertex 
of MPP



Properties of MPP
l All B vertices are on or outside 

MPP and all W vertices are on or 
inside MPP

l The uppermost, leftmost vertex in 
a sequence of vertices contained 
in a cellular complex is always a 
W vertex of MPP

69

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Orientation of 3 points
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MPP Algorithm
l Input: Vertices (with W/B Markers)

l In a list in boundary order

l First vertex, V0:

l Uppermost, leftmost, a W vertex of MPP

l Crawler Vertices:

l White crawler: WC and Black crawler: BC 

l VL: Last MPP vertex found

l Vk: Current vertex being examined

71

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



MPP Algorithm
l Let WC = BC = V0

l Repeat over the list

l [A] sgn(VL,WC,Vk)>0
l VL ßWC and WC = BC = VL

l Continue with the next vertex after VL.

l [B] sgn(VL,WC,Vk)≤0 & sgn(VL,BC,Vk)≥0
l WC = Vk, if Vk is convex (W)
l BC = Vk , otherwise

l Continue with the next vertex after VK.

l [C] sgn(VL,BC,Vk)<0
l VL ßBC and WC = BC = VL

l Continue with the next vertex after VL. 72

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur

Move either along W 
or B as it appears and 
record a MPP vertex if 
conditions met. Start 
again from the new 
MPP vertex. 



MPP Algorithm
l Vertices:

l V0 (1,4) W 
l V1 (2,3) B 

l V2 (3,3) W 

l V3 (3,2) B 
l V4 (4,1) W 

l V5 (7,1) W 
l V6 (8,2) B 

l V7 (9,2) B

73

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



MPP Algorithm: Execution
l WC=BC=V0=VL=(1,4)

l V1=(2,4) W

l Condition [B]

l sgn(VL,Wc,V1)=0 &

l sgn(VL,Bc,V1)=0

l WC=V1=(2,4)

l Next vertex: V2= (3,4) B

74

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



MPP Algorithm: Execution
l BC=(1,4), WC=(2,4)

l VL=(1,4)

l V2=(3,4) B

l Condition [B]

l sgn(VL,Wc,V2)=0 &

l sgn(VL,Bc,V2)=0

l BC=V2=(3,4)

l Next vertex V3= (3,3) W

75

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



MPP Algorithm: Execution
l WC=(2,4), BC=(3,4)

l VL=(1,4)

l V3=(3,3) W

l Condition [C]

l sgn(VL,Bc,V3) < 0

l VL = (3,4) BC

l WC= BC =(3,4)

l Next vertex V4=(3,3)

76

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



MPP Algorithm: Execution
l WC= BC =(3,4)

l VL=(3,4)

l V4=(3,3) W

l Condition [B]

l sgn(VL,Wc,V4)=0 &

l sgn(VL,Bc,V4)=0

l WC=V4=(3,3)

l Next vertex V5=(4,3) B

77

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



MPP Algorithm: Execution
l VL=(3,4)

l WC=(3,3)

l BC=(3,4)

l V5=(4,3) B

l Condition [A]

l sgn(VL,Wc,V5) >0 

l VL = WC = (3,3) 

l  WC = BC = VL

l Next vertex: 
V6=(4,3) B

78
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MPP Algorithm: Execution
l WC = BC = VL=(3,3)

l V6=(4,3) B

l Condition [B]

l sgn(VL,Wc,V6)=0

l sgn(VL,Bc,V6)=0
l BC=(4,3)

l Next vertex V7=(4,2) W

79
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MPP Algorithm: Execution
l WC=(3,3), BC=(4,3)

l VL=(3,3)

l V7=(4,2) W

l Condition [C]

l sgn(VL,Bc,V7) < 0
l VL= BC=(4,3)

l WC = BC = VL

l Next vertex V8= (4,2)
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MPP Algorithm: Execution
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l WC=(4,3), BC=(4,3)

l VL=(4,3)

l V8=(4,2) w

l Condition [B]

l sgn(VL,Wc,V8)=0
l sgn(VL,Bc,V8)=0

l WC=(4,2)
l Next vertex V9= (4,1)



MPP Algorithm: Execution
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l WC=(4,2), BC=(4,3)

l VL=(4,3)

l V9=(4,1) W

l Condition [B]

l sgn(VL,Wc,V9)= 0 

l sgn(VL,Bc,V9)= 0 
l WC= (4,1)

l Next vertex V10= (5,1)



MPP Algorithm: Execution
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l WC=(4,1), BC=(4,3)

l VL=(4,3)

l V9=(5,1) W

l Condition [A]

l sgn(VL,Wc,V10) >  0 
l VL = WC= (4,1) W

l WC= BC= (4,1)
l Next vertex V11= (5,1)

l And so on ..



MPP : Example
l Image of size 

566x566

l 8-connected 
boundary (1900 
points)

l Of different cell size: 
2, 3, 4, 6, 8, 16 & 32
l # of Vertices: 

l 206, 160, 127,92, 
66, 32 & 13.

84
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3 4 6

8 32

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  



Input image Output

MPP : Example



Digital curve and straight segments 
l Digital Curve (DC): A DC C is an ordered sequence of grid

points (representable by chain codes) such that each point
(excepting the first one) in C is a neighbor of its predecessor
in the sequence.

l Irreducible Digital Curve: A DC C is said to be irreducible
if and only if the removal of any grid point in C makes C
disconnected. 

86

Fast polygonal approximation of digital curves using relaxed straightness properties
P Bhowmick, BB Bhattacharya - IEEE TPAMI, 2007

An example of DC and irreducible DC.

https://scholar.google.com/scholar?oi=bibs&cluster=6240645547101005551&btnI=1&hl=en


Chain code representations: 
Examples

87

Fast polygonal approximation of digital curves using relaxed straightness properties
P Bhowmick, BB Bhattacharya - IEEE TPAMI, 2007

Chain codes and their enumeration for defining DC. (a) Chain codes in 8-
neighborhood connectivity. (b) (1, 2)10756543.
(c) (1, 2)10756543(3, 4)76. (d) (2, 1)0756543121

https://scholar.google.com/scholar?oi=bibs&cluster=6240645547101005551&btnI=1&hl=en


Digital Straight Line Segments 
(DSS)
l Let p, q be points of the digital picture subset S, and let pq

denote the (real) line segment between p and q. 
l pq lies near S if,  for any (real) point (x,y) of pq, there exists a 

(lattice) point (i,j) of S such that max {|i - x |,|j - y|} < 1.
l S has the chord property if, for every p, q in S, the chord pq

lies near S..

88AZRIEL ROSENFELD, Digital Straight Line Segments. IEEE TRANSACTIONS 
ON COMPUTERS, VOL. c-23, NO. 12, DECEMBER 1974, 1264-1268.

pq lies near S if for any v there exists u 
and such that max(𝚫x,𝚫y)<1. 

u 𝚫x
𝚫y

p

q

S
v



Digital Straight Line Segments 
(DSS)
l A digital straight line segment (DSS) is the digitization of a 

straight line segment.
l A DSS is an irreducible DC.
l A DC is the digitization of a straight line segment if and only 

if it has the chord property .

89AZRIEL ROSENFELD, Digital Straight Line Segments. IEEE TRANSACTIONS 
ON COMPUTERS, VOL. c-23, NO. 12, DECEMBER 1974, 1264-1268.



DSS characterization
l R1: The runs have at most two directions, differing by 45 degrees, 

and, for one of these directions, the run length must be 1.
l At most two types of elements and they differ only by unity, modulo eight.
l One of the two element values always occurs singly.

l R2: The runs can have only two lengths: consecutive integers.
l Successive occurrences of the element occurring singly are as uniformly 

spaced as possible.

l R3: One of the run lengths can occur only once at a time.
l R4: For the run length that occurs in runs, these runs can

themselves have only two lengths p and p+1, which are consecutive
integers, and so on.
l Except run lengths at two extreme ends (l and r,  l, r < (p+1) )

90AZRIEL ROSENFELD, Digital Straight Line Segments. IEEE TRANSACTIONS 
ON COMPUTERS, VOL. c-23, NO. 12, DECEMBER 1974, 1264-1268.

Fast polygonal approximation of digital curves using relaxed straightness properties
P Bhowmick, BB Bhattacharya - IEEE TPAMI, 2007

https://scholar.google.com/scholar?oi=bibs&cluster=6240645547101005551&btnI=1&hl=en


An example of a DSS

91

04 1 05 1 04 1 05 1 04 1 05

l Singular element (s) : 1
l Non singular element  (n): 0
l Parameters: n, s, l, r, p.

P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness 
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007

l=4, r=5, p=4



Digital curve segmented by 
DSS’s
l Segments shown with alternate black and grey fragments.

l Of small lengths.

l Too many fragmentation.

92
P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness 
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007



Approximate DSS (ADSS)
l Used R1 

l  Modified R2
l Run lengths of non-singly occurred (n) element may vary more than 

unity, depending on the minimum length (p).

l But dropped R3 and R4 
l To allow longer fragments of DC approximating a straight line 

segment.

l DSS is also accepted in the criteria of ADSS

l New Parameters:  Run length interval parameters [p,q] 
excepting l and r.

l Other hyperparameters: Tolerances 
l q-p < d=L (p+1)/2 ⅃ , and l-p, r-p < 𝜖 =L (p+1)/2 ⅃ 

93
P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness 
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007

Integer computation



Not DSS but ADSS

94

P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness 
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007

04 1 05 1 05 1 04 1 04 1 05 Run length seq: 455445

l=4, r=5, p=4, q=5

Both having non-singular occurrences

l=4, r=4, p=4, q=5

04 1 05 1 04 1 05 1 05 1 05 1 04 Run length seq: 4545554

Run lengths of 5 nonconsecutive 1 & 3



Not ADSS

95

P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness 
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007

04 1 05 1 01 1 08 1 04 1 05

l=4, r=5, p=1, q=8

q-p > L (p+1)/2 ⅃ =1 
l-p > L (p+1)/2 ⅃ =1 
r-p > L (p+1)/2 ⅃ =1 

011 1 02 1 02 1 01 1 01 1 01

l=11, r=1, p=1, q=2

l-p > L (p+1)/2 ⅃ =1 



Extraction of a sequence of ADSS 
from a DC
l Start from the first point by including it as a vertex of the 

first ADSS.

l Extract parameters l, n, and s
l l: leftmost run length of non-singularly occurring element, 
l n: non-singularly occurring element, and
l s:  non-singularly occurring element.

l Compute runs of n till it breaks conditions of ADSS.
l Include the point before the breaking condition emerges in 

the sequence of ADSS in the DC.
l Repeat above steps from the extraction of parameters and 

continue till the end of DC.
96

P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness 
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007

A linear time algorithm



Example
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DSS

ADSS

P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness 
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007



Polygonization / Polylineation  
l Input: A sequence of ADSS.

l Output: Vertices of polygon.

l Algo:
l Merge consecutive sequences following an error criteria.

l Cumulative (Max) area of triangles formed by end points of the ADSS 
and the line segment of the merged segment should remain within a 
fraction of maximum iso-thetic distance of the merged line segment.

l Represent merged segments as a straight line segment with start 
and end points of the start and end ADSS of the sequence.

l Continue till all the ADSS’s are covered.

98

p(xs,ys)

q(xe,ye)

p1(x1,y1)
p2(x2,y2)

diso(p,q) =max{|xe-xs|,|ye-ys|}

Cumulative area=∆pp1q+∆pp2q < 𝝉 diso(p,q) 

P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness 
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007



A few results

99

P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness 
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007



Another example

(a) input set of DC. (b) 
ADSS. (c) Ccum  : 𝝉= 2. 
(d) Cmax : 𝝉 =2. (e) Ccum: 
𝝉 =8. (f) Cmax :  𝝉 =8.

100

P. Bhowmick and B. B. Bhattacharya, "Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness 
Properties," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1590-1602, Sept. 2007



Polygonal approximation by 
merging

1. Merge points along boundary until LSE of line fit 
exceeds a threshold. Output a line (side of 
polygon) with parameters of LSE

2. Repeat Step 1 as long as there are points on the 
boundary

3. Intersections of line segments give vertices

101

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur

Disadvantage
May not produce vertices at inflection points as ‘long’ 
consume these ‘outlier’ points within the threshold.



Polygonal approximation by 
splitting
l Boundary into two parts using extreme points.

l Diameter for closed contour providing two points.
l Most distant point from the straight line connecting two end 

points of an open contour segment.

l Start with the closed contour and determine two 
extreme points. 
l Output two open segments in counter-clockwise order.

l Recursively process every open segment and form a 
vertex at each stage connecting end points of open 
contours 
l till the max. dist. less than a threshold. 102



Polygonal approximation by 
splitting

103

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  



Skeletonization: Medial Axis 
Transform (MAT)
l MAT of region R with border B

l For each point p in R, find its closest neighbor in B
l “Closest” use the concept of distance – often Euclidean

l If p has more than one such neighbor, it belongs to the 
Medial Axis (Skeleton) of R

l Intuitively MAT is defined by Grassfire analogy

104

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Skeletonization: Medial Axis 
Transform (MAT)
l Intuitive approach is computationally expensive as 

it needs the computation of the distance from 
every interior point to every point on the boundary 
of a region

l Alternate approach is to remove non-MAT points

l Typical fast (thinning) algorithms iteratively delete 
boundary points of a region provided the deletion:
l Does not remove the end points
l Does not break connectivity

l Does not cause excessive erosion of the region
105

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Skeletonization: Thinning 
Algorithm
l Border / Contour Point: An object (region) point (1) with at 

least one background (0) neighbor

l Step 1
l Repeat for all contour points

l Flag contour points for deletion by Condition 1
l Remove all flagged points (change 1 à 0)

l Step 2

l Repeat for all contour points
l Flag contour points for deletion by Condition 2

l Remove all flagged points (change 1 à 0)
l Repeat Steps 1 & 2 till no deletion is possible 106

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Skeletonization: Thinning 
Algorithm
l Condition 1

a) 2 ≤ N(p1) ≤ 6
b) T(p1) = 1

c) p2.p4.p6=0

d) p4.p6.p8=0

l Condition 2
A. 2 ≤ N(p1) ≤ 6

B. T(p1) = 1

C. p2.p4.p8=0
D. p2.p6.p8=0

107

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur

T(p1) =Number of 0-1 
transitions in the sequence 
p2,p3,p4,p5,p6,p7,p8, p9,p2

N(p1) =Non-zero neighbors of 
p1= p2+p3+p4+p5+p6+p7+p8+p9

N(p1)=4

T(p1)=3



Skeletonization: Thinning 
Algorithm
l Condition 1

a) 2 ≤ N(p1) ≤ 6
b) T(p1) = 1

c) p2.p4.p6=0

d) p4.p6.p8=0

l Condition 2
A. 2 ≤ N(p1) ≤ 6

B. T(p1) = 1

C. p2.p4.p8=0
D. p2.p6.p8=0

108
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T(p1) =Number of 0-1 
transitions in the sequence 
p2,p3,p4,p5,p6,p7,p8, p9,p2

N(p1) =Non-zero neighbors of 
p1= p2+p3+p4+p5+p6+p7+p8+p9

N(p1)=4

T(p1)=3



Skeletonization: Thinning 
Algorithm
o If p1 satisfies [a,b,c,d] (or [A,B,C,D]) it 

should be safe to remove it (flag it for 
removal) while preserving the structure of 
the skeleton intact
n Note: The actual removal is lazy so that the 

order of checking for these conditions does not 
impact the actual application

109

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Skeletonization: Thinning 
Algorithm
o Interpretations of conditions

n [a, A]: Guard Condition for
o Protecting end point 

o Limiting excessive erosion

n [b, B]: Guard Condition for
o Preserving connectivity

n [c, C] / [d, D]: Candidate Condition for
o Border points

o Corner points

110

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Skeletonization: Thinning 
Algorithm
o How do the conditions guarantee a 

MAT?

n [a, A] 2 ≤ N(p1) ≤ 6 is violated if p1 
has
o 1 neighbor à End point of a stroke

o 7 neighbors à Causes excessive 
erosion

n [b, B] T(p1) = 1 is violated if p1 is 
o On a 1-pixel thick stroke (bridge) à 

Preserve connectivity
111

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur

N(p1)=4

T(p1)=3



Skeletonization: Thinning 
Algorithm
l [c,d] p2.p4.p6=0 and p4.p6.p8=0 are satisfied 

simultaneously by minimal set of values:
l p4=0 (East boundary point) or 
l p6=0 (South boundary point) or

l p2=0 and p8=0 (NW corner point)

l [C,D] p2.p4.p8=0 and p2.p6.p8=0 are satisfied 
simultaneously by minimal set of values:
l p2=0 (North boundary point) or 
l p8=0 (West boundary point) or
l p4=0 and p6=0 (SE corner point)

l NE corner point (p2=0 and p4=0) satisfy [c,d] and [C,D]
l SW corner point (p6=0 and p8=0) satisfy [c,d] and [C,D]112

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Skeleton: Example

113
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Input image Output

Thinning : Example



Morphological Operations
l Operations on binary images 

with a structuring element to 
perform morphological 
(structural) changes  or 
extract the features

l Structural element (SE):
l  a set of points in the digital grid 

with a reference integral 
coordinate system.

l Performs ‘Hit’ or ‘Fit’ operation 
at any point in the digital grid.

115

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur

Examples of SE

Points conforming 
to  ‘Fit’ operations 
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Reflection and Translation

}   ,|{ˆ Bfor bbwwB Î-==
}   ,|{)( Afor azaccA z Î+==

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur

Reflection 

Translation 



Basic morphological 
operations

n Erosion

n Dilation

n combine to

n Opening                              object

n Closing                             background

117

Keep general shape 
but smooth with 
respect to object / 
background

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



n Does the structuring element fit the set?

n erosion of a set A by structuring element B: all z in 
A such that B is in A when origin of B=z

n shrink the object

Erosion

118
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Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Erosion
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Erosion
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Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Erosion Example 1

Watch out: In these examples a 1 refers to a black pixel!

Original 
image

Erosion by 3*3 
square structuring 
element

Erosion by 5*5 
square structuring 

element

121
Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Input image Eroded image

Erosion: Example 



Erosion Example 2

Original 
image

After 
erosion 
with a 
disc of 
radius 10

After 
erosion 
with a 
disc of 
radius 20

After 
erosion 
with a 
disc of 

radius 5
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What Is Erosion For?
Erosion can split apart joined objects

Erosion can strip away extrusions

Watch out: Erosion shrinks objects! 124

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Dilation

l Does the structuring element hit the set?

l dilation of a set A by structuring element B: all z in 
A such that B hits A when origin of B=z

l grows the object

125
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Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Dilation
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Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Dilation
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Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Dilation Example 

Original image Dilation by 3*3 
square 

structuring 
element

Dilation by 5*5 
square 

structuring 
element

Watch out: In these examples a 1 refers to a black pixel!

128
Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Input image Dilated Image

Dilation: Example 



130

Dilation : Bridging gaps

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



What Is Dilation For?
Dilation can repair breaks

Dilation can repair intrusions

Watch out: Dilation enlarges objects 131
Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Useful
n Erosion

n removal of structures of certain shape and size, 
given by SE

n Dilation

n filling of holes of certain shape and size, given 
by SE

132
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l Erosion and Dilation are duals of each other with 
respect to set complementation and reflection

BABA

BABA
cc

cc

ˆ)(

ˆ)(

-=Å

Å=-

Duality
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5 basic structuring elements

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  



Combining erosion and 
dilation
n WANTED:

n remove structures / fill holes

n without affecting remaining parts

n SOLUTION:

n combine erosion and dilation

n (using same SE)  

135
Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



136

Erosion followed by dilation: 
eliminating irrelevant detail

structuring element B = 13x13 pixels, each set to 1.
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Opening
erosion followed by dilation, denoted ∘

l eliminates protrusions

l breaks necks

l smoothes contour

137

BBABA Å-= )(

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Opening
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Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Opening

13902-Sep-11

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Opening Example

Original 
Image

Image 
After 

Opening
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Closing
dilation followed by erosion, denoted •

l smooth contour

l fuse narrow breaks and long thin gulfs

l eliminate small holes

l fill gaps in the contour

141

BBABA -Å=• )(

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Closing
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Closing
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Closing Example

Original 
Image

Image 
After 

Closing
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144Image Morphology

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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Properties

Opening
(i)   A°B is  a subset (subimage) of A
(ii)   If C is a subset of D, then C °B is a subset of D °B
(iii)  (A °B) °B = A °B

Closing
(i)   A is a subset (subimage) of A•B
(ii)   If C is a subset of D, then C •B is a subset of D •B
(iii)  (A •B) •B = A •B

Note: repeated openings/closings has no effect!
Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



l Opening and Closing are duals of each other with 
respect to set complementation and reflection

BABA

BABA
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cc

ˆ)(
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•=
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



Duality
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Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Hit-or-Miss Transformation ⊛ 
(HMT)
n find location of one shape among a set of shapes 

n ”template matching”

n composite SE: object part (B1) and background 
part (B2)

n does B1 fits the object while, simultaneously, 
B2 misses the object, i.e., fits the background?

147
Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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Hit-or-Miss Transformation

][)( 21 BABABA c -Ç-=*

)ˆ()( 21 BABABA Å--=*

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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Hit-or-Miss transformation

Original image 
(white pixels) 

B1 

Complement 
B2 

Erosion with B1 

Erosion with B2 

Searching for white pixels, that do not 
have 4-connected neighboring pixels. 

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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Application: Boundary 
Extraction

)()( BAAA --=b

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur
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Boundary / Contour 
Extraction

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  Im
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Application: Hole Filling
The key equation for region filling is

Where X0 contains  a starting point inside in each 
hole hole, B is a symmetric structuring element and 
Ac is the complement of A

This equation is applied repeatedly until Xk is equal 
to Xk-1

Finally,  union of  the result with A is performed.

.....3,2,1     )( 1 =ÇÅ= - kABXX c
kk
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Region Filling
,...3,2,1   )( 1 =ÇÅ= - kABXX c

kk

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  
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Application: Extraction of 
connected components
l Y: A connected component in a set A.
l p: A point in Y.

l For extracting connected component Y perform 
the following iteratively with X0=p:

𝑋! = 𝑋!"#⊕𝐵 ⋂𝐴, 	 𝑘 = 1,2,3

Terminates when Xk=Xk-1 to provide Y.
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Connected components

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  
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Application: Convex Hull
l Convex Set

l A set A is said to be convex if the straight 
line segment joining any two points in A 
lies entirely within A.

l Convex Hull: H = CH(S)

l Minimal convex superset of S

l Continuous Algorithm

l Convex Deficiency: H – S
156

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur



Convex Hull

157

l Bi, i=1,2,3, 4  : Four structuring elements

l Perform the following iterative construction for 
each structuring element to provide Di at 
convergence.

𝑋!$ = 𝑋!"#$ ⊛	𝐵$ ⋃𝐴, 𝑖 = 1,2,3, 𝑎𝑛𝑑	4; 𝑘 = 1,2,3, …

The convex hull of A: 𝐶 𝐴 =8
$%#

&

𝐷$

Constraints: Length of vertical  and horizontal to be less than 3.

Approximate solution!



Convex hull
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Convex Hull

159
Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  Im

ag
es

 ta
ke

n 
fro

m
 G

on
za

le
z 

& 
W

oo
ds

, D
ig

ita
l I

m
ag

e 
Pr

oc
es

sin
g 

(2
00

2)



160

Thinning

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur

l The thinning of a set A by a structuring element B.

l A more useful expression using an alternate 
sequence of structuring elements till convergence.

l Where Bi is a rotated version of Bi-1.

𝐴⨂𝐵 = 𝐴 − (𝐴⊛ 𝐵)

𝐵 = 𝐵#, 𝐵', … . , 𝐵(

𝐴⨂ 𝐵 = ⋯ 𝐴⨂𝐵# ⨂𝐵' ⋯ ⨂𝐵(
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Thinning

cBAA
BAABA
)(
)(

*Ç=

*-=Ä

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  
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Thinning

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  
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Thickening

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur

l Thickening morphological dual of thinning.

l The SE has the same form but 1’s (foreground) and 0’s 
(background) interchanged.

l As in thinning, thickening also performed using an 
alternate sequence of rotated SEs till convergence.

l Equivalent to thinning background of the thinned 
pattern and then taking the complement. 
l The thinned background forms the boundary of the 

thickened  object.

𝐴⨀𝐵 = 𝐴⋃(𝐴⊛ 𝐵)

𝐴⨀ 𝐵 = ⋯ 𝐴⨀𝐵# ⨀𝐵' ⋯ ⨀𝐵(
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Thickening

)( BAABA *È=•
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Skeletons

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  Im
ag

es
 ta

ke
n 

fro
m

 G
on

za
le

z 
& 

W
oo

ds
, D

ig
ita

l I
m

ag
e 

Pr
oc

es
sin

g 
(2

00
2)



166

Skeletons

Courtesy: P.P. Das, Professor, Dept. of CSE, IIT Kharagpur

l Morphological Skeleton:

l Where,

l k is the last iterative step before A erodes to an empty set.

l The set A can be reconstructed by

𝑆 𝐴 =)
#$%

&
𝑆#(𝐴)

𝑆& 𝐴 = 𝐴⊝ 𝑘𝐵 − 𝐴⊝ 𝑘𝐵 ∘ 𝐵

𝐴 =)
#$%

&
𝑆#(𝐴)⨁𝑘𝐵

k successive erosion.

k successive dilation.
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wrongly shown 
as object points 
after the erosion 
with radius 1.



Summary
l Binary or Bilevel images: f: Z2 (or Z3 or Zn )à {0/1}

l Background (0) and Foreground or Object Point (1)

l Neighbors, Connectivity, Paths and Distances
l 2D: 4 / 8 –neighbors     3D: 6 / 18 / 26 –neighbors.
l Multiple paths of shortest distances exist.
l Jordan’s Curve Theorem breaks.

l 4-8 or (8-4) Grids for complementary  adjacency in 
background and foreground.

l Component Labeling: Chamfering  (Linear Time)
l Different types of distances 

l 4 (/8)-Neighbor in 2D and 6(/18/26)-Neighbor in 3D
l Octagonal distances
l Weighted distances



Summary
l Distance Transform

l Chamfering Algorithm for Additive Distances

l Medial Axis Transform
l Applications: Transformation, Cross-sections, Skeleton

l Shape representation.
l Contour following, Chain Codes
l Polygonization

l Minimum-perimeter polygon (MPP), ADSS algorithm, 
Merging and Splitting

l Skeletonization: Thinning

l Morphological Operations
l Dilation, Erosion, Opening, Closing, Hit-&-Mis Transform
l Applications: Smoothing, Convex Hull, Region Filling, 

Thinning, Connected Component Extraction, Thinning
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Thank You


