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Image Transform

q Image in continuous form: f(x,y): A 2-D function, where (x,y) 
in R2.

q Let B be a set of basis functions:

      B={bi(x,y) | i=..,-1,0,1,2,3,….}, bi(x,y) in R or C.
q Let f(x,y) be expanded using B as follows:

Coefficients of 
transform

Properties of 
basis functions 
can be extended 
in the analysis.



Orthogonal 
Expansion
and 1-D Transforms

l Inner product:

l Orthogonal expansion: If B satisfies :

l Transform coefficients in O.E.:
l ci=1à orthonormal expansion.

l Inverse transform: 

Forward transform



Fourier 
transform
Orthogonality:

Fourier Transform:
Inverse Transform:

Orthogonal But not complete!

Complete base

Full reconstruction

Unit impulse function
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Fourier transform of a square pulse

l f(t)= A, -B/2 < t < B/2
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Fourier transform of 
a Gaussian Pulse

l Transform is also a Gaussian function.

l Standard deviation in the Fourier domain (angular 
frequency)  is reciprocal of that in the time domain.
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Convolution and Fourier 
Transform

l Convolved output: Sum of scaled and shifted impulse 
responses.
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Fourier transform of unit impulse
l Definition and properties of unit infinite impulse
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Train of impulses: 5𝛿(𝑡 − 𝑛∆𝑇)

Fourier series of a period 𝚫T 
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Fourier transform of  a 
sampled function

l fs(t)= f(t), for t= n 𝚫T, n: an integer.

          =  0,  otherwise
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Even and odd 
functions
l Even: f(-x)=f(x) for all x.

l Odd: f(-x)=-f(x) for all x. à f(0)=0.
l For even f(x) :

l For odd f(x) :

l Full reconstruction possible with cosines (sines)  only 
if it is even (odd).



Discrete representation

l Discrete representation of a function:

l Can be considered as a vector in an infinite dimensional 
vector space.

l In our context, it is of a finite dimensional space, e.g. {f(n), 
n=0,1,..N-1}, or

l  f=[f(0) f(1) … f(N-1)]T.

Sampling interval

Set of integers



Discrete Linear Transform: A 
general form

l For n-dimensional vector X any linear transform,
l e.g.  Ymx1=BmxnXnx1
l Xnx1: A column vector of dimension n.
l Ymx1: A column vector of dimension m.
l Bmxn: A matrix of dimension mxn.

l Has inverse transform if B is a square matrix and 
invertible. 



Basis vectors
l B is the transformation matrix.

l Rows of B are called basis vectors.

l Y(i)=<bi*T. X>

l Orthogonality condition:
dot product or inner product.



Discrete Fourier Transform 
(DFT)

DFT: Fourier series of a periodic function

f(n+N)=f(n)

k/N: Normalized frequency

Fundamental 
frequency: 1/(NX0)A single period

F(k)



DFT as 
Fourier Series

l For a periodic sequence of period N: f(n+N)=f(n) 
l Sampling interval: X0   
l Period: N . X0   

l Fundamental period: 1/ (NX0)
l Fourier series: Components of k/(NX0), k=0,1,2,…
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DFT properties
l Linearity:

l Circular time shifting

l Periodicity:

l Symmetry

l Duality
l  DFT of DFT of x(n) = N. x(<-k>N) 

l Energy preservation
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Centering DFT

l Multiplying k0 th sinusoid shifts transform to k0.
l Let k0=N/2 

l è f(n) (-1)n

l è F(<k – N/2>N)
l Centers the Fourier transform bringing the 0 th freq. 

component in the center.
l A useful trick to center the transform 

l Multiply by (-1)n and then compute DFT.
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Fast Fourier Transform (FFT)
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Cooley, I.W., and Tukey, I.W., "An Algorithm for the Machine Calculation of
Complex Fourier Series," Math. Comp., vol. 19, pp. 297-301, April 1965.



Fast Fourier Transform (FFT)
 (Cooley and Tukey (1965))
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DFT of order N/2 of 
Even terms

DFT of order N/2 of 
Odd  terms

Danielson-Lanczos lemma 
Danielson, G.C. and Lanczos, C., "Some Improvements In Practical Fourier
Analysis and Their Application to X-Ray Scattering from Liquids," J. Franklin
Institute, vol. 233, pp. 365-380 and 435-452, 1942.

Divide and conquer strategy
Exploiting other properties of DFT 
can be reduced to O(N log(N))



CMP for DFT

f(n) h(n)

Linear convolution

o Periodic convolution: Convolution between two finite 
sequences with periodic extension. 

o It is defined if both have the same period, providing a periodic 
sequence with the same period.
Circular Convolution

CMP for DFT holds for 
circular convolution.



Circular Cross Correlation
l Cross correlation with periodic extensions of both the 

functions.
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Filtering in the transform domain

l Use sufficient 0 padding at the both end to make circular 
convolution equivalent to linear convolution
l To take care of boundary effect.

l The length of f(n) and h(n) should be the same.

l H(k) usually provided as symmetric about the center.
l 0th freq. at the N/2 th element.

l Center F(k) as Fc(k) by multiplying f(n) with (-1)n

l Obtain G(k)= H(k) . Fc(k)
l Multiply G(k) by (-1)k and perform IDFT to get g(n).

F(k) H(k) G(k)=H(k) F(k)



DFT: A linear 
transform

Hermitian transpose

ℱ=!> =
1
𝑁
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Generalized 
Discrete Fourier 
Transform (GDFT)



Symmetric / Antisymmetric 
extension of a finite sequence

Original sequence

Whole symmetry (WS) Half symmetry (HS)

Whole antisymmetry (WA) Half antisymmetry (HA)

Even function

Odd function

DCTs and DSTs exist for 
any finite sequence.



Discrete Cosine / 
Sine Transforms

l Types of symmetric / antisymmetric extensions at the two 
ends of a sequence and a type of GDFTà DCTs / DSTs

F0,0
Type-I Even DCT

WSWS



Discrete Cosine / 
Sine Transforms

F0,1/2
Type-2 Even DCT

jF0,0
Type-1 Even DST

HSHS

WAWA



Discrete Cosine / 
Sine Transforms

jF0,1/2
Type-2 Even DST

There exist 16 different types of DCTs and DSTs.

HAHA

Type-II Even DCT is used in signal, image, and 
video compression.



Matrix form of 
Type-II DCT

l Matrix form:

l Each row is either symmetric (even row) or 
antisymmetric (odd row).

N-point DCT



Antiperiodic extension and 
skew-circular convolution

l Antiperiodic function with an antiperiod N, if  
f(x+N)=-f(x).

l An antiperiodic function of antiperiod N à a 
periodic function of period 2N.

l Skew-circular convolution: convolution between 
two antiperiodic extended sequences of the 
same antiperiod.



CMPs for DCTs



2-D Transforms
l Easily extendable if basis functions are 

separable, i.e. B={ bij(x,y)=gi(x).gj(y)}.

l B: Orthogonal if G={gi(x), i=1,2,..} is 
orthogonal.

l B: Orthogonal and complete if G is so.

l Reuse of 1-D transform computation.

1-D basis function
They could be from two different 
sets, say b(x,y)=g(x).h(y).



2D Discrete 
Transform

l Use of separability:
l Transform columns.
l Transform rows.

l Input: Xmxn      1-D Transform Matrix: B
l Transform columns: [Y1]mxn=BmxmXmxn
l Transform rows: Ymxn=[BnxnY1T]T

                                    =Y1BnxnT   
                                    =BmxmXmxnBnxnT

Ymxn =BmxmXmxnBnxnT



Image Transform: DFT

Image: f(m,n), of size M x N

Property of separability
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DFT Examples:

Magnitudes 
and phases 
are shown 
by bringing 
them into 
displayable 
range, and 
shifting the 
origin at the 
center of 
image.

Magnitude

Phase



2D DCT
l Type-I:

l Type-II

l Matrix Representation:



An example:

Discrete Cosine Transform

There are 16 different types of DCTs and DSTs.

Input image



Wavelets

l Functions to have ideally finite support in both its original 
domain (say, time or space) and also in the transform domain 
(i.e., the frequency domain).

l No such function exists truly satisfying it.
l Attempts to match these properties as far as possible.

l Acts as basis functions.
l Good localization property in both domain.



A few examples
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An interesting function
l Same form in time and frequency domain

l Gaussian

l Analogy from Heisenberg’s uncertainty principle

Variance of t weighted 
by g2(t). Similarly for f.
For any function it 
holds !!



Designing wavelet: An 
intuitive approach

l Time limited signal: 
l Square pulse 

l Band limited signal: 
l Sinusoidal signal

WaveletDc component=0

n Wavelet to satisfy both?  
n Multiply them!!



Gabor wavelet (1-D)

Real part Imaginary part



Shannon wavelet

t -B B f



Haar Wavelet



Family of wavelets
l Translate and dilate a mother wavelet

tt0

translate

Dilate
(low freq.)

scale

shift



Continuous wavelet transform

l Forward transform

l Inverse transform:

where
Fourier transform

From 1-D 
representation to 
2-D representation.

How correlated at 
that instance with 
the wavelet fn.

Reveals structure 
of function at 
multiple 
resolution. 



Multiresolution representation

l Gaussian Pyramid

I(0)

I(1)

I(2)

d(1)

d(2)

d(i) =I(i-1)- upsampled(I(i))

+

+

I(0)=us(us (I(2) )+ d(2) )+d(1)

d(1) =I(0)- upsampled(I(1))

d(2) =I(1)- upsampled(I(2))

Approximation Details



Gaussian Pyramid: 
Wavelet analysis

2
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I(2)

d(2)

d(1)

Obtained by 
convolution with 
G(x,y) and 
downsampling at 
successive stages.

Obtained by 
convolution with 
DOG(x,y) and 
downsampling at 
successive stages.

Scaling function

Filtering and 
transformation 
equivalent!!Wavelet 

function



Haar Wavelet transform

l Scaling function

Two parent 
wavelets

n Wavelet function

Family of translated and dilated functions from the both forms the basis.



Discrete wavelet transform 
(DWT)

l Translated only at discrete grid points.
l k=0, ± 1, ± 2, ……
l Finite sequence: A finite number of basis functions.

l Scaled by powers of 2: 2j, j=0,1,…
l Downsampling takes care of dilation of wavelets 

and allows to use the same function at that level.

l Family of scaling and wavelet functions:

M<N (length of sequence)



Haar wavelets in discrete grid

l N=8

Transformation matrix:

Courtesy: “Image and video processing in the compressed domain”, J. Mukhopadhyay, CRC Press, 2011.



DWT 
l Translated only at discrete grid points.

l Scaled by powers of 2: 2j, j=0,1,…
l Downsampling takes care of dilation of wavelets 

and allows to use the same function at that level.

l Filtering by the filter of same impulse response.

l Filtering banks.

x(n)
xa(n)
xd(n)

x’(n)
h(n)

g(n)

h’(n)

g’(n)

Approximation

Details

Analysis Synthesis



Dyadic decomposition

l At each level sample size is halved
l Equivalent of scaling by 2.

l Total number of samples remain the same.

x(n)

xa1(n)

xd1(n)

h(n)

g(n)

h(n)

g(n)
xd2(n)

xa2(n)



Typical wavelet filters

l Daubechies 9/7 filters

l Le Gall 5/3 filters

Courtesy: “Image and video processing in the compressed domain”, J. Mukhopadhyay, CRC Press, 2011.



2-D DWT
l Separable filters.

l Transform rows, then transform columns.

By 5/3 Analysis filters

Applications:
o Compression
o Denoising
o Feature representation
o Image fusion
…



Image compression
l An alternative representation requiring less 

storage compared to in original original space.
l An analogy with representation of a circle:

l A set of all points in its periphery.

l Only three (non-collinear) points.
l Center and radius

l Decompression: Reconstruction from  a compressed 
image in the original space.

l Lossy compression: Approximate reconstruction.
l Lossless compression: Exact reconstruction
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Desirable features
l Good reconstructibility

l Visual quality of decompressed image should be high.

l Low redundancy
l Spatial correlation, Channel (color) correlation, Symbol 

representation,

l Factorization in substructures
l Frequency components, Space-frequency 

decomposition, 
l DCT, DWT
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Generic pipeline of compression 
and decompression

59

Input 
Object

Forward 
Transform Transform 

Coefficients

Entropy 
Encoding

Compres
sed 

object

Compress
ed Object

Entropy 
Decoding Transform 

Coefficients
Inverse 

Transform

Decompr
essed 
object



JPEG: Baseline scheme
Typical quantization 
mask.Type-II Even

Courtesy: J. Mukhopadhyay, Image and video processing 
in the compressed domain, CRC Press, 2011.



Color encoding in JPEG
l Y-Cb-Cr color space:

Y
Cb
Cr

Y   = 0.520G  + 0.098 B + 0.256R
Cb = -0.290G + 0.438 B - 0.148R+128
Cr = -0.366G  - 0.071 B + 0.438R+128

Courtesy: J. Mukhopadhyay, Image and video processing 
in the compressed domain, CRC Press, 2011.



JPEG 2000

DWT Quantization Entropy
Coding

Compressed
Stream

A single tile Subbands
Code-blocks
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l Lossy: Daubechies 9/7 filters

l Lossless: Le Gall 5/3 filters

l Color Transformation: 
l Lossy: Y-Cb-Cr (w/o downsampling)

l Lossless: 𝑌 =
𝑅 + 2𝐺 + 𝐵

4 U=R-G V=B-G

𝐺 = 𝑌 −
𝑈 + 𝑉
4

R=U+G

B=V+G

Courtesy: J. Mukhopadhyay, Image and video processing 
in the compressed domain, CRC Press, 2011.



JPEG 2000: Quantization
l Each sub-band independently quantized with a uniform 

quantization threshold.

l n: Nominal dynamic range of the sub-band, e.g. 10 for HH1

l 𝜖 , 𝜇 : the number of bits allotted to the exponent and mantissa 
respectively, of its coefficients.

l Quantized coefficient (of X(u,v) )

l For lossless compression: 𝚫=1

l Implicit quantization:  Lowest level (LL): 𝜖0 , 𝜇0

l For the i th sub-band at level k: 𝜇i= 𝜇0 and 𝜖i= 𝜖0 + i – k 63
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JPEG2000: Code Structure

64Courtesy: J. Mukhopadhyay, Image and video processing in the 
compressed domain, CRC Press, 2011.

l Every sub-band partitioned into a set of non-overlapping codeblocks.
l Each codeblock independently coded by a schema called Embedded 

Block Coding on Truncation (EBCOT).

l each bit-plane of wavelet coefficients is processed by three passes, 
namely, significant propagation, magnitude refinement, and clean-up.

l The resulting bit-stream encoded using Arithmetic Encoding.

l A layer  formed with the output 
of similar passes from a group 
of code blocks.

l  In a layer, packets formed by 
grouping corresponding code 
blocks of subbands at the same 
level of decomposition. 
l also known as precincts



Summary
l Image transforms involve representation of images as a 

linear combination of a given set of basis functions.

l For a finite discrete sequence, this is treated as a linear 
combination of a given set of  basis vectors.

l Orthogonal set of basis functions (vectors) simplifies 
computation of forward and inverse transforms
l Inner product of the function with the basis function.
l Examples: Fourier Transform, Wavelet Transforms (may be also 

non-orthogonal)

l A set of basis functions may be orthogonal but not 
complete for exactly representing any arbitrary function.
l Cosine and Sine Transforms in continuous domain.
l For finite discrete sequences several orthogonal and complete 

transforms available: DFT, GDFTs, DCTs, DSTs, etc.
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Summary
l Alternative representation provides other insights of 

structure of images.
l low frequency and high frequency components.

l May become useful for providing more compact 
representation.
l A few transform coefficients.
l Selective quantization of components, considering their 

effect on our perception.
l Image compression: JPEG

l Sometimes convenient for processing.
l Filtering, enhancement, ….



Summary

l Wavelets represent the scale of features in an 
image, as well as their positions.
l Time-scale, Space-Scale representation

l Fast computation of forward and inverse transform

l Provides multiresolution representation.
l Enables progressive and scalable processing 

l Lossy and lossless  reconstruction possible.

l useful for a number of applications including image 
compression.
l JPEG2000
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Thank You


