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Image Transform

q Image in continuous form: f(x,y): A 2-D function, where (x,y) 
in R2.

q Let B be a set of basis functions:

      B={bi(x,y) | i=..,-1,0,1,2,3,….}, bi(x,y) in R or C.
q Let f(x,y) be expanded using B as follows:

Coefficients of 
transform

Properties of 
basis functions 
can be extended 
in the analysis.



Orthogonal 
Expansion
and 1-D Transforms

l Inner product:

l Orthogonal expansion: If B satisfies :

l Transform coefficients in O.E.:
l ci=1à orthonormal expansion.

l Inverse transform: 

Forward transform



Fourier 
transform
Orthogonality:

Fourier Transform:
Inverse Transform:

Orthogonal But not complete!

Complete base

Full reconstruction

Unit impulse function
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Fourier transform of a square pulse

l f(t)= A, -B/2 < t < B/2
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Fourier transform of 
a Gaussian Pulse

l Transform is also a Gaussian function.

l Standard deviation in the Fourier domain (angular 
frequency)  is reciprocal of that in the time domain.
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Convolution and Fourier 
Transform

l Convolved output: Sum of scaled and shifted impulse 
responses.
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Fourier transform of unit impulse
l Definition and properties of unit infinite impulse
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Train of impulses: 5𝛿(𝑡 − 𝑛∆𝑇)

Fourier series of a period 𝚫T 
with unit impulse in a period
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Fourier transform of  a 
sampled function

l fs(t)= f(t), for t= n 𝚫T, n: an integer.

          =  0,  otherwise
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Even and odd 
functions
l Even: f(-x)=f(x) for all x.

l Odd: f(-x)=-f(x) for all x. à f(0)=0.
l For even f(x) :

l For odd f(x) :

l Full reconstruction possible with cosines (sines)  only 
if it is even (odd).



Discrete representation

l Discrete representation of a function:

l Can be considered as a vector in an infinite dimensional 
vector space.

l In our context, it is of a finite dimensional space, e.g. {f(n), 
n=0,1,..N-1}, or

l  f=[f(0) f(1) … f(N-1)]T.

Sampling interval

Set of integers



Discrete Linear Transform: A 
general form

l For n-dimensional vector X any linear transform,
l e.g.  Ymx1=BmxnXnx1
l Xnx1: A column vector of dimension n.
l Ymx1: A column vector of dimension m.
l Bmxn: A matrix of dimension mxn.

l Has inverse transform if B is a square matrix and 
invertible. 



Basis vectors
l B is the transformation matrix.

l Rows of B are called basis vectors.

l Y(i)=<bi*T. X>

l Orthogonality condition:
dot product or inner product.



Discrete Fourier Transform 
(DFT)

DFT: Fourier series of a periodic function

f(n+N)=f(n)

k/N: Normalized frequency

Fundamental 
frequency: 1/(NX0)A single period

F(k)



DFT as 
Fourier Series

l For a periodic sequence of period N: f(n+N)=f(n) 
l Sampling interval: X0   
l Period: N . X0   

l Fundamental period: 1/ (NX0)
l Fourier series: Components of k/(NX0), k=0,1,2,…
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DFT properties
l Linearity:

l Circular time shifting

l Periodicity:

l Symmetry

l Duality
l  DFT of DFT of x(n) = N. x(<-k>N) 

l Energy preservation
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Centering DFT

l Multiplying k0 th sinusoid shifts transform to k0.
l Let k0=N/2 

l è f(n) (-1)n

l è F(<k – N/2>N)
l Centers the Fourier transform bringing the 0 th freq. 

component in the center.
l A useful trick to center the transform 

l Multiply by (-1)n and then compute DFT.
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Fast Fourier Transform (FFT)
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Cooley, I.W., and Tukey, I.W., "An Algorithm for the Machine Calculation of
Complex Fourier Series," Math. Comp., vol. 19, pp. 297-301, April 1965.



Fast Fourier Transform (FFT)
 (Cooley and Tukey (1965))
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DFT of order N/2 of 
Even terms

DFT of order N/2 of 
Odd  terms

Danielson-Lanczos lemma 
Danielson, G.C. and Lanczos, C., "Some Improvements In Practical Fourier
Analysis and Their Application to X-Ray Scattering from Liquids," J. Franklin
Institute, vol. 233, pp. 365-380 and 435-452, 1942.

Divide and conquer strategy
Exploiting other properties of DFT 
can be reduced to O(N log(N))



CMP for DFT

f(n) h(n)

Linear convolution

o Periodic convolution: Convolution between two finite 
sequences with periodic extension. 

o It is defined if both have the same period, providing a periodic 
sequence with the same period.
Circular Convolution

CMP for DFT holds for 
circular convolution.



Circular Cross Correlation
l Cross correlation with periodic extensions of both the 

functions.
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Filtering in the transform domain

l Use sufficient 0 padding at the both end to make circular 
convolution equivalent to linear convolution
l To take care of boundary effect.

l The length of f(n) and h(n) should be the same.

l H(k) usually provided as symmetric about the center.
l 0th freq. at the N/2 th element.

l Center F(k) as Fc(k) by multiplying f(n) with (-1)n

l Obtain G(k)= H(k) . Fc(k)
l Multiply G(k) by (-1)k and perform IDFT to get g(n).

F(k) H(k) G(k)=H(k) F(k)



DFT: A linear 
transform

Hermitian transpose

ℱ=!> =
1
𝑁
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Generalized 
Discrete Fourier 
Transform (GDFT)



Symmetric / Antisymmetric 
extension of a finite sequence

Original sequence

Whole symmetry (WS) Half symmetry (HS)

Whole antisymmetry (WA) Half antisymmetry (HA)

Even function

Odd function

DCTs and DSTs exist for 
any finite sequence.



Discrete Cosine / 
Sine Transforms

l Types of symmetric / antisymmetric extensions at the two 
ends of a sequence and a type of GDFTà DCTs / DSTs

F0,0
Type-I Even DCT

WSWS



Discrete Cosine / 
Sine Transforms

F0,1/2
Type-2 Even DCT

jF0,0
Type-1 Even DST

HSHS

WAWA



Discrete Cosine / 
Sine Transforms

jF0,1/2
Type-2 Even DST

There exist 16 different types of DCTs and DSTs.

HAHA

Type-II Even DCT is used in signal, image, and 
video compression.



Matrix form of 
Type-II DCT

l Matrix form:

l Each row is either symmetric (even row) or 
antisymmetric (odd row).

N-point DCT



Antiperiodic extension and 
skew-circular convolution

l Antiperiodic function with an antiperiod N, if  
f(x+N)=-f(x).

l An antiperiodic function of antiperiod N à a 
periodic function of period 2N.

l Skew-circular convolution: convolution between 
two antiperiodic extended sequences of the 
same antiperiod.



CMPs for DCTs



2-D Transforms
l Easily extendable if basis functions are 

separable, i.e. B={ bij(x,y)=gi(x).gj(y)}.

l B: Orthogonal if G={gi(x), i=1,2,..} is 
orthogonal.

l B: Orthogonal and complete if G is so.

l Reuse of 1-D transform computation.

1-D basis function
They could be from two different 
sets, say b(x,y)=g(x).h(y).



2D Discrete 
Transform

l Use of separability:
l Transform columns.
l Transform rows.

l Input: Xmxn      1-D Transform Matrix: B
l Transform columns: [Y1]mxn=BmxmXmxn
l Transform rows: Ymxn=[BnxnY1T]T

                                    =Y1BnxnT   
                                    =BmxmXmxnBnxnT

Ymxn =BmxmXmxnBnxnT



Image Transform: DFT

Image: f(m,n), of size M x N

Property of separability
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DFT Examples:

Magnitudes 
and phases 
are shown 
by bringing 
them into 
displayable 
range, and 
shifting the 
origin at the 
center of 
image.

Magnitude

Phase



2D DCT
l Type-I:

l Type-II

l Matrix Representation:



An example:

Discrete Cosine Transform

There are 16 different types of DCTs and DSTs.

Input image



Wavelets

l Functions to have ideally finite support in both its original 
domain (say, time or space) and also in the transform domain 
(i.e., the frequency domain).

l No such function exists truly satisfying it.
l Attempts to match these properties as far as possible.

l Acts as basis functions.
l Good localization property in both domain.



A few examples

t
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An interesting function
l Same form in time and frequency domain

l Gaussian

l Analogy from Heisenberg’s uncertainty principle

Variance of t weighted 
by g2(t). Similarly for f.
For any function it 
holds !!



Designing wavelet: An 
intuitive approach

l Time limited signal: 
l Square pulse 

l Band limited signal: 
l Sinusoidal signal

WaveletDc component=0

n Wavelet to satisfy both?  
n Multiply them!!



Gabor wavelet (1-D)

Real part Imaginary part



Shannon wavelet

t -B B f



Haar Wavelet



Family of wavelets
l Translate and dilate a mother wavelet

tt0

translate

Dilate
(low freq.)

scale

shift



Continuous wavelet transform

l Forward transform

l Inverse transform:

where
Fourier transform

From 1-D 
representation to 
2-D representation.

How correlated at 
that instance with 
the wavelet fn.

Reveals structure 
of function at 
multiple 
resolution. 



Multiresolution representation

l Gaussian Pyramid

I(0)

I(1)

I(2)

d(1)

d(2)

d(i) =I(i-1)- upsampled(I(i))

+

+

I(0)=us(us (I(2) )+ d(2) )+d(1)

d(1) =I(0)- upsampled(I(1))

d(2) =I(1)- upsampled(I(2))

Approximation Details



Gaussian Pyramid: 
Wavelet analysis

2
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I(2)

d(2)

d(1)

Obtained by 
convolution with 
G(x,y) and 
downsampling at 
successive stages.

Obtained by 
convolution with 
DOG(x,y) and 
downsampling at 
successive stages.

Scaling function

Filtering and 
transformation 
equivalent!!Wavelet 

function



Haar Wavelet transform

l Scaling function

Two parent 
wavelets

n Wavelet function

Family of translated and dilated functions from the both forms the basis.



Discrete wavelet transform 
(DWT)

l Translated only at discrete grid points.
l k=0, ± 1, ± 2, ……
l Finite sequence: A finite number of basis functions.

l Scaled by powers of 2: 2j, j=0,1,…
l Downsampling takes care of dilation of wavelets 

and allows to use the same function at that level.

l Family of scaling and wavelet functions:

M<N (length of sequence)



Haar wavelets in discrete grid

l N=8

Transformation matrix:

Courtesy: “Image and video processing in the compressed domain”, J. Mukhopadhyay, CRC Press, 2011.



DWT 
l Translated only at discrete grid points.

l Scaled by powers of 2: 2j, j=0,1,…
l Downsampling takes care of dilation of wavelets 

and allows to use the same function at that level.

l Filtering by the filter of same impulse response.

l Filtering banks.

x(n)
xa(n)
xd(n)

x’(n)
h(n)

g(n)

h’(n)

g’(n)

Approximation

Details

Analysis Synthesis



Dyadic decomposition

l At each level sample size is halved
l Equivalent of scaling by 2.

l Total number of samples remain the same.

x(n)

xa1(n)

xd1(n)

h(n)

g(n)

h(n)

g(n)
xd2(n)

xa2(n)



Typical wavelet filters

l Daubechies 9/7 filters

l Le Gall 5/3 filters

Courtesy: “Image and video processing in the compressed domain”, J. Mukhopadhyay, CRC Press, 2011.



2-D DWT
l Separable filters.

l Transform rows, then transform columns.

By 5/3 Analysis filters

Applications:
o Compression
o Denoising
o Feature representation
o Image fusion
…



Image compression
l An alternative representation requiring less 

storage compared to in original original space.
l An analogy with representation of a circle:

l A set of all points in its periphery.

l Only three (non-collinear) points.
l Center and radius

l Decompression: Reconstruction from  a compressed 
image in the original space.

l Lossy compression: Approximate reconstruction.
l Lossless compression: Exact reconstruction
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Desirable features
l Good reconstructibility

l Visual quality of decompressed image should be high.

l Low redundancy
l Spatial correlation, Channel (color) correlation, Symbol 

representation,

l Factorization in substructures
l Frequency components, Space-frequency 

decomposition, 
l DCT, DWT
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Generic pipeline of compression 
and decompression
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Input 
Object

Forward 
Transform Transform 

Coefficients

Entropy 
Encoding

Compres
sed 

object

Compress
ed Object

Entropy 
Decoding Transform 

Coefficients
Inverse 

Transform

Decompr
essed 
object



JPEG: Baseline scheme
Typical quantization 
mask.Type-II Even

Courtesy: J. Mukhopadhyay, Image and video processing 
in the compressed domain, CRC Press, 2011.



Color encoding in JPEG
l Y-Cb-Cr color space:

Y
Cb
Cr

Y   = 0.520G  + 0.098 B + 0.256R
Cb = -0.290G + 0.438 B - 0.148R+128
Cr = -0.366G  - 0.071 B + 0.438R+128

Courtesy: J. Mukhopadhyay, Image and video processing 
in the compressed domain, CRC Press, 2011.



JPEG 2000

DWT Quantization Entropy
Coding

Compressed
Stream

A single tile Subbands
Code-blocks
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l Lossy: Daubechies 9/7 filters

l Lossless: Le Gall 5/3 filters

l Color Transformation: 
l Lossy: Y-Cb-Cr (w/o downsampling)

l Lossless: 𝑌 =
𝑅 + 2𝐺 + 𝐵

4 U=R-G V=B-G

𝐺 = 𝑌 −
𝑈 + 𝑉
4

R=U+G

B=V+G

Courtesy: J. Mukhopadhyay, Image and video processing 
in the compressed domain, CRC Press, 2011.



JPEG 2000: Quantization
l Each sub-band independently quantized with a uniform 

quantization threshold.

l n: Nominal dynamic range of the sub-band, e.g. 10 for HH1

l 𝜖 , 𝜇 : the number of bits allotted to the exponent and mantissa 
respectively, of its coefficients.

l Quantized coefficient (of X(u,v) )

l For lossless compression: 𝚫=1

l Implicit quantization:  Lowest level (LL): 𝜖0 , 𝜇0

l For the i th sub-band at level k: 𝜇i= 𝜇0 and 𝜖i= 𝜖0 + i – k 63
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JPEG2000: Code Structure

64Courtesy: J. Mukhopadhyay, Image and video processing in the 
compressed domain, CRC Press, 2011.

l Every sub-band partitioned into a set of non-overlapping codeblocks.
l Each codeblock independently coded by a schema called Embedded 

Block Coding on Truncation (EBCOT).

l each bit-plane of wavelet coefficients is processed by three passes, 
namely, significant propagation, magnitude refinement, and clean-up.

l The resulting bit-stream encoded using Arithmetic Encoding.

l A layer  formed with the output 
of similar passes from a group 
of code blocks.

l  In a layer, packets formed by 
grouping corresponding code 
blocks of subbands at the same 
level of decomposition. 
l also known as precincts



Summary
l Image transforms involve representation of images as a 

linear combination of a given set of basis functions.

l For a finite discrete sequence, this is treated as a linear 
combination of a given set of  basis vectors.

l Orthogonal set of basis functions (vectors) simplifies 
computation of forward and inverse transforms
l Inner product of the function with the basis function.
l Examples: Fourier Transform, Wavelet Transforms (may be also 

non-orthogonal)

l A set of basis functions may be orthogonal but not 
complete for exactly representing any arbitrary function.
l Cosine and Sine Transforms in continuous domain.
l For finite discrete sequences several orthogonal and complete 

transforms available: DFT, GDFTs, DCTs, DSTs, etc.
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Summary
l Alternative representation provides other insights of 

structure of images.
l low frequency and high frequency components.

l May become useful for providing more compact 
representation.
l A few transform coefficients.
l Selective quantization of components, considering their 

effect on our perception.
l Image compression: JPEG

l Sometimes convenient for processing.
l Filtering, enhancement, ….



Summary

l Wavelets represent the scale of features in an 
image, as well as their positions.
l Time-scale, Space-Scale representation

l Fast computation of forward and inverse transform

l Provides multiresolution representation.
l Enables progressive and scalable processing 

l Lossy and lossless  reconstruction possible.

l useful for a number of applications including image 
compression.
l JPEG2000
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Thank You


