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Segmentation

e Partitioning image pixels into meaningful non-
overlapping sets.

e Let R be the entire spatial region occupied by the
image.

e Segmentation is a process to partition R into n sub-
regions R, R,, ..., R, so that

R, Is a connected set, i=1,2,..,n A ITgicaI predicate over R,

Ri=R R NR =¢,Viji#]j Q(R,) = TRUE, Vi

—-

o~
[
p—

Q(R; UR;) = FALSE,if i&j adjacent




Segmentation Approaches

e Edge based e Region based
Checks discontinuities Checks similarity
In the functional space among connected set of
Assumption: pixels
Boundaries of regions Similar according to a
sufficiently different predefines set of
from each other and criteria.

also from the
background.




Edge detection: Gradient
Operations

Consider the image as a 2D function: f(x, y)

of (x, )
OX

of (x, )
Oy
of (x,y) . of (x, y)}.
OxX oy

=f(x+Ly)=f(x,)

=/ (6 y+D=f(x,)

Vi(x,y)=




Computation with mask

) ) 1. Scan the image top to bottom
] and left to right.

(x,y) (x+1,y) 2. At every point (x,y) place the
mask and compute the

Weights weighted sum.
N (L y+D g(.)=(1) oy + 1) +(-1).Ax,)
-1 (x,y) 3. Write the value g(x,y) at (x,»)
pixel position of the processed

Image.



Robust gradient computation

Averaging neighboring gradient values

gx%@ 1] 0] 1 1] 1
F&b E>-1 0 1 0 0

E%Qj 1 0] 1 1) -1

Prewitt operator

7% (6 times of the gradient value in any direction)




Robust gradient computation

Weighted average of neighboring gradient values

I -1 0] 1 1|2
-1

2X 1 1 1 _2 O 2 O O O
T

1x -1 1 1 -1 O 1 -1/ -2 -1

Sobel operator

(8 times of the gradient value in any direction)




Results of gradient
operations

Vertical Horizontal Resultant




Example
(Sobel Operator: Horizontal+Vertical)

FIGURE 10.16

(a) Original image
of size

834 X 1114 pixels,
with intensity
values scaled to
the range [0, 1].
(b) [8x, the

component of the
gradient in the

x-direction, 0| o

obtained using
the Sobel mask in

Fig. 10.14(f) to

filter the image.

(c) |8/, obtained

using the mask in B
Fig. 10.14(g). S
(d) The gradient

image, |8 + [&/. | -1 | o

. Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008



Example (Gradient Image)

FIGURE 10.17
Gradient angle
image computed
using

Eqg. (10.2-11).
Areas of constant
intensity in this
image indicate
that the direction
of the gradient
vector is the same
at all the pixel
locations in those
regions.

RN
% Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008



Example (Post Smoothing)

a b
cd

FIGURE 10.18
Same sequence as
in Fig. 10.16, but
with the original
image smoothed
usinga S5 X 5
averaging filter
prior to edge
detection.
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Gonzalez and R.E Woods © 1992-2008



Example (Sobel: Comparison)

e

sl

e With Smoothing

G
Een 12
Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008



Example (Sobel Diagonal)

ab

FIGURE 10.19
Diagonal edge
detection.

(a) Result of
using the mask in
Fig. 10.15(c).

(b) Result of
using the mask in
Fig. 10.15(d). The
input image in
both cases was
Fig. 10.18(a).

0 1 2 -2 -1 0
-1 0 1 -1 0 1
-2 -1 0 0 1 2
,f‘\\ 13

21"  Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008



ab

FIGURE 10.20 (a) Thresholded version of the image in Fig. 10.16(d), with the threshold

selected as 33% of the highest value in the image; this threshold was just high enough to

eliminate most of the brick edges in the gradient image. (b) Thresholded version of the
K&}.

774 image in Fig. 10.18(d), obtained using a threshold equal to 33% of the highest value in
2(‘ that image.

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008
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Higher order gradients!

of (x,)
ox

=f(x+Ly)=f(x,p)

0’ f(x,y) _0f(xy) df(x—1y)

dx? 0x

dx

1

-2

1

(X_1’y) (X’y) (X+1’y)

~flx+1L,y)—fO,y)—(Flxy) —fx—1y))

=fx+1Ly)=2f(x,y)+f(x—1,y)

02f (x,y) . 0°f (x,¥)
0x?2 dy?

N

Laplacian Operator

OR

0| 1
1| -4
0 1

110
0 -4
1] 0




Weighted combination!
Laplacian Operator

0°f (x,y)  0°f(x,y) 1 X
0x? T dy? >

+

s x| 120 1 G 4x




Types of discontinuities in edges

Isolated

Point Line

or
Roof

Ramp Flat Step

Segment

X

Horizontal Intensity profile
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First and second derivatives at
discontinuities in edges

|solated
Point lJne
Roof
Ramp Flat / Step
Segmen /
. X g
First 0  -a 0 b -b. 0 c dd-c 0 e 0

derivative

Magnitude high during transition

mewnd 0 -a a b .-2b b c d-c2 gl-cc e-e
K &erivative _ _ -2d
Chanae of sian at point of transition



Edge detection from first and
second order derivatives

e First order derivative

Generally produce thicker edges
Use magnitude of the derivative.

e Second order derivative

Stronger response to fine details, such as, thin lines,
Isolated points and noise.

More sensitive to noise

‘double edge response’ at the point of discontinuity
Produces two values for every edge.
zero crossing, change of sign, better localization

Sign changes could be used to qualify transition
(dark to light, or reverse).




Effect of noise and blur

e Effect of noise
Introducing spurious discontinuities
Many local spikes

Introduces errors in estimating derivatives
Affects second derivative more

Weak edges may get suppressed

e Effect of blur
Step edges tend to become ramp edges

Slope of ramp edges decreases
Inversely proportional to amount of blur

Location of transition shifts.

20



Handling noise

e Smooth image
Introduces blur due to low pass filtering

e Detect edge points

Computes candidate edge points
For example thresholding

e Localize edges
Select true edge points from the candidates
Check the zero-crossings

Blur increases with the increase of size of
smoothing area (scale)

- Track edge points in scale space

21



The Marr-Hildreth edge detector
(1980)

e For robust edge detection in presence of noise.

e Observations
Intensity changes are not independent of scale
Detection requires edge operator of different sizes

Sudden intensity change gives rise to trough or peak
in first derivative; or equivalently a zero-crossing in
the second derivative

e [Two salient features of operators

A differential operator
Capable of being tuned to act at any desired scale.

Large operators for detecting blurry edges
Small operators for sharp edges

22




The Marr-Hildreth operator (1980)

e Laplacian of Gaussian: VG Negative
V4G (x,y) /& of the
, Mexican H r r fi_f-._". LOG is
X242 exican Hat Operator | \ e

G(x,y) =e 202

$ e N
s A RS
o iy e - —
= SR ! ..,
2 2 RN Y e O
o . Sy e |1 o —-————y
FOEa) e ey A Y (PR o o, Do e S
G(x,y) 0°G(x,y) ~SEeaanli ez e
) ) SRR NI / N\ e S SR
| 2 -5 AVEY SRTR- s A
.

V2G(x,y) =
VG
5 x% +y?% — 20° _x2+g2
VeG(x,y) = p e 20
Zero crossings occur at x’+y°= 207
A circle of radius of V2o ey | e
"‘*f 220 k'—/f

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008



Typical approximation with integer
weight for o=1

0 0 -1 0 0
0 1 -2 1 0
1 2 16 2 1
0 1 -2 1 0
0 0 -1 0 0




Smoothing and differentiation

g, y) =V[f(x,y) *G(x,¥)] = f(x,y) * VG (x,y)

Smooth with G(x,y)

and then apply
Laplacian

=

Convolve with
Laplacian of
Gaussian

Detect zero-crossings after applying
the operator to detect edge pixels.

25




Marr-Hildreth edge detection
algorithm

e Filter the image using nxn Gaussian filter.
To retain 97% of energy, n > 6o

e Compute Laplacian (e.g. using the 3x3 mask for
Laplacian operator)

e Detect zero-crossings

OR

e Filter the image using nxn LoG filter.
To retain the effect of zero-crossing, n> 2\2o

e Detect zero-crossings 2




Approximation of LoG by DoG

A kind of BPF.
_x*+y? 1 _x*+y?
e 207

2
e 0-1 —_—

2

e DoG: DoG(x,vy) =
(x.7) 21007 210

e Approximates to LoG with the ratio: oy : 0, = 1.6:1
e o of LoG having same zero-crossings:

2 2 2
2 0107 1 01
0" == > N\ =

01 — 03 0,

Certain channels of human vision system are
selective w.r.t. freq. and orientation
and be modeled by DOG with a ratio of 1.75:1.




LoG: Example

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008

ab
cd

FIGURE 10.22

(a) Original image
of size 834 X 1114
pixels, with
intensity values
scaled to the range
[0, 1]. (b) Results
of Steps 1 and 2 of
the Marr-Hildreth
algorithm using

o =4andn = 25.
(c) Zero crossings
of (b) using a
threshold of 0
(note the closed-
loop edges).

(d) Zero crossings
found using a
threshold equal to
4% of the
maximum value of
the image in (b).
Note the thin
edges.

28



Example

Original image
Sobel Gradient
LoG

Threshold LoG
Zero crossing

A=




LoG: Example

T J@:‘Ex—@;y/;(rm—r/n
/b\‘iéf; e SW: Original
(L':/// '3\ \QPS

U i\ Pf o SE LOG
e NW: Thresholded
e NE: Zero-Crossings

30
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LoG: Effect of S
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The Canny edge detector (1986)

e Three basic objectives

Low error rate
All edge pixels to be detected
No spurious edges

Good localization
To be as close as possible to true edge points

Single edge point response
Only one point for each edge point
e Optimization criteria set involving above
objectives.
Difficult to get closed form optimal solution

32



Optimal detector for noisy step

edges
e Extension to 2D

e In 1_D_ Analysis required to be
Derive responses for an repeated along a direction
ideal step edge in 1-D .

but not known a priori.

contaminated by white _
Compute gradient vector

Gaussian noise.
Optimal numerical solution Smooth the Image
using Gaussian filter

close to first derivative of a

Gaussian. Apply Sobel operator

2 Get magn!tude M(x,y)

de 202 x _x% and direction a(x,y) at
T oz¢ 207 each pixel.

Edges are thick. .




Localization and thin edges

e Non-maximal suppression
Get the discrete direction d (e.g. 0, 45, 90 and 135 in degrees)
closest to a(x,y).

Set M(x,))=0, if it is less than its neighbor along the orthogonal
direction of d.

e Use of two thresholds

Higher threshold (7,): low false +ve but high false -ve.
Detected edge pixel less erroneous, but misses weaker edges

Lower threshold (7;): High false +ve but low false -ve.
Detected edge pixel more erroneous, but retains weaker edges

e Hysteresis Thresholding

Retain all edge pixels whose M(x,y) > T,
Category 1

Retain an edge pixel with T, > M(x,y) > T, if it is connected to
an edge pixel of category 1.

34



Canny edge detection pipeline

e(x)
i
1)

ol

fx.y)

-




Example: Canny

(a) Original (b) Smoothed (c) Gradient magnitudes (d) Edges after non-
maximum suppression

e)

White: Strong Edges
Grey: Weak Edges
Black: No Edges

f)
White: Valid Edges
Blue: Chosen Weak

Edges
Red: Rejected Weak (e) Double thresholding (f) Edge tracking by hys- (g) Final output
teresis
-Sep-11 Image Segmentation 36

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008



Example: Canny

ab
cd

FIGURE 10.25

(a) Original image
of size 834 X 1114
pixels, with
intensity values
scaled to the range
[0, 1].

(b) Thresholded
gradient of
smoothed image.
(c) Image
obtained using the
Marr-Hildreth
algorithm.

(d) Image
obtained using the
Canny algorithm.
Note the
significant
improvement of
the Canny image
= compared to the
o) other two. 37
)

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008
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Example: Canny

ab
cd

FIGURE 10.26

(a) Original head
CT image of size
512 X 512 pixels,
with intensity
values scaled to
the range [0, 1].
(b) Thresholded
gradient of
smoothed image.
(c) Image
obtained using
the Marr-Hildreth
algorithm.

(d) Image
obtained using
the Canny
algorithm.
(Original image
courtesy of Dr.
David R. Pickens,
Vanderbilt
University.)

- R.C. Gonzalez and R.E Woods © 1992-2008
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Edge linking

e Local linking e Global linking

Link an edge pixel with Hough Transform

another pixel in its Accumulate votes of

neighborhood having similar possible sets of

magnitude and direction. parameters for lines
Computationally expensive or curves passing

Another technique through the edge
Set an edge pixel of specific pixel.

direction with a tolerance and

having sufficient magnitude to Local peaks provide

the geometric lines

1, else to 0. s
Fill small gaps along that or curve§ linking the
direction and compute edge points. 3

connected components.



Hough transform

Discretize parameter space into bins

For each feature point in the image, put a vote in
every bin in the parameter space that could have

generated this point.
Find bins that have the most votes.

. | Yy=mx+Db
o m I
Image space Hough parameter space

ough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959



Parameter space representation

- A straight line in the image corresponds to a point in
Hough space.

Image space
Hough parameter space

=myX+Db my,b
y=my 1 j> ’( 1/D1)

,X ,m

Adapted from slides by S. Seitz




Parameter space representation

- A point in the image corresponds to a line in the
Hough space.

Image space Hough parameter space
b
Y b=-x;m+y;
(X1,Y1) > \
@
X m

Adapted from slides by S. Seitz



Parameter space representation

Two points in the image correspond to two lines Iin
the Hough space.

Image space Parameters of Hough parameter space
straight line b
'i joining these 4
y+ @ (X2,Y2) two points. b=-x,Mm+
| — \ 1MTYy,
E'Q(X1,Y1) > K» b= -XoM+Y,;
X m

Adapted from slides by S. Seitz



Parameter space
representation

Problems with the (m,b) space:

e Unbounded parameter domain

e Vertical lines require infinite m
- Alternative: polar representation

xcosd + ysingd = p
0O varies from 0 to 18Q¢°

« p varies from 0 to the length
e _of diagonal of the image grid.

X
Each point will add a sinusoid in the (0,p) parameter space
Adapted from slides by S. Seitz




Algorithm

T A: Accumulator arra
Initialize accumulator A to all zeros y

For each edge point (x,y) in the image

{

For8=0to 180

{ P
P=XxcosO+ysin0

} A6, p) =A(6, p) + 1 9

}

Find the value(s) of (0, p) where A(0, p) is a local
maximum

The detected line in the image is given by
P=xcosO+ysinB

Adapted from slides by S. Seitz



Basic illustration

features

votes

http://ostatic.com/files/images/ss_hough.jpg



A more complicated image

-7 "lImage Y X[ Hough Transform

http://ostatic.com/files/images/ss_hough.jpg



Binarization (Thresholding)

e Separation of foreground from background.
Foreground: Dark pixels (text)
Background: Bright pixels (white region)
e Pixels in a binarized image set to one of the two
values (e.g. 255 or 0).

255 for background.
0 for foreground.

e f: R (orZ) = {0,1} (Or {0, 255}, etc.)

A pixel mapping function




Binarization (Thresholding)

e A simple algorithm
Choose a threshold value T.

A pixel greater than T is set to 255
(background), otherwise to O (foreground).




Image histogram
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Thresholding
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A simple iterative algorithm

e Select an initial estimate of global threshold T.

e Partition into two sets of background (x > T) and
foreground (x < T).

e Compute means of background and foreground
m, and m,, respectively.

e Obtain new estimate of T, T=(m4+m,)/2.
e |terate above steps till convergence

52




Bayesian Classification of
foreground and background pixels

Pixels belonging to two classes:
wl: Foreground
w2: Background

Compute p(wl|x) and p(w2|x).

p(x)

Bayes’ theorem:
) = p(o)p(x| w)
p(x)

| ™
p(x|w1) X p(x|w2) p(w]

Bayes’ classification rule:
ssign x to wl if p(wl|x) > p(w2|x), else to w2.
ZN ~

To check whether p(w1l)p(x|w1l) > p(w2) p(x|w2)



Expectation-Maximization
Algorithm

1. Compute p(w1l) and
, p(w2) from proportional

2. Compute parameters of areas of each region.

p(x|w1l) by assuming it

Gaussian. 2
e

Th x
3. Compute parameters of p(x|w2)
by assuming it Gaussian.i> U, Oy

1 1(x—_u)2

o




Expectation-Maximization

Algorithm
r
Vil

TTh x—

4. Compute new threshold
value so that for x<T7%,
pwl|x)>pw2|x), and vice
versa.

5. Iterate till the value of 77
converges.

p(wl) = Z p(x)
pw2)=1-p(wl)
1, = Zx-p(X)

Th
02 = 3 pl) - 4
x=0

255

Hy = Zx.p(x)
x=Th+1
) 255 )
O, = Zx p(x)— u
x=Th+l

2
2



Otsu Thresholding

e Choose a threshold value, which maximizes
between class variance (0%g).

px) —

|
p(wl)p(wﬁ)(ﬂz — 1)’




An example
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Probabilistic modeling with
mixture of densities

Number of Component densi
components K P v

P(¥) = ) P(xIG)P(G)
=1

Component proportion
e G, defines the ith segment or cluster.

e K is a hyper-parameter and should be known.
e For multivariate Gaussian distribution:
P(x|G;)) ™ N(u; 2)) P(X) = 1 —;(X—ﬂ)TZ_l(X—,U)

g 1€
x5
e To estimate yu; 2, and P(G)) for all i. from the set of iid.

l

input samples: X={x'}, =1,2,..,.N




Mixture of Gaussians:
Probabilistic inference

e Technique could be refined by computing
probabilities of belongingness to a segments.

Mixing coefficients
Parametric PDF:

PG (i s T ) = Z nkzv(xmk,zk)

O

Mean vector :
Covariance matrix



: 1
Expectation Zir = — 10N (g |1 i)

Maximization (EM) 2
- / Zi:Z”kN(xi|ﬂkazk)
Algorlthm Normalizing '
factor

s Start with initial set :{Tl,'k, Ui » Zk}'

= E-Step (Expectation stage)

= Compute [probability |(z,,) of x belonging to kth
Gaussian cluster.

Optional step. - Assign x to the mth cluster whose [probability is
Decision to be— .
maximum.

taken at the end.

= M-Step (Maximization Stage)

= Re-estimate parameters ({my, 1, 25 }) from class
distribution

= [terate above two steps till it converges.




EM thresholding: An
example

= Intervals: [0,60], [61, 119], [120,255]
Blue Green Yellow




K-means clustering: Segmentation
through estimating means

e Given N d-dimensional data points,

e compute K partitions (clusters) in them

so that it minimizes the sum of square of distances between a data point
and the center of its respective partition (cluster).

Optimization problem

Minimization of Sum of Squared Errors (SSE)




The Lloyd algorithm (1957)
(Batch K-Means)

e Given K initial centers, assign a point to the

cluster represented by its center, if it is the
closest among them.

e Update the centers.

e |terate above two steps, till the centers do not
change their positions.




K-means: example (k=2)

® Choose initial centers.
O O
o~ A Compute partiti
ompute partitions.
A P P
O O O
O 0




K-means: example (k=2)

O Compute partitions.
@ @ ®
O /A
A Update centers.
O ® O
@ o




K-means: example (k=2)

® Compute new partitions with
o updated centers.




K-means: example (k=2)

Update centers.




K-means: example (k=2)




K-means: example (k=2)

® Compute new partitions with

OO0 4 updated centers.
O A




K-means: example (k=2)

Update centers.




K-means: example (k=2)

O
O
200

Stop at no change
(or a very little
change in cluster
centers).



Histogram analysis using K-
Means clustering

e Compute the histogram i(x), x=0,1,2,..N

e Choose initial k brightness levels for the set of
means, say m;m,,..,m,;, such that
0<m;<m,<..<m<N

e Update the ith means, for all i

Z(mi+mi+1)/2 Xh(X)

(Mmij—1+m;)/2

m; = Z(mi+mi+1)/2 h(.X')

(mj—1+m;)/2

lterate till convergence




K-Means Segmentation: An
example

k-means for Blue: 0-65
k=3 green: 66-119
m,;=39,

yellow:120-255




Mean Shift Algorithm:
Segmentation through estimating
modes (peaks)

e A probability density estimation method

Non-parametric

Does not require the number of components (K) as in K-
Means.

e |dentify peaks of distribution.

e Each peak defines a cluster / segment.

Pixels / elements having shortest path to a peak defines
a segment




Probability density estimation

e Probability distribution using Parzen Windows
A function of some finite number of data points x,...x,

P(x) = lZ:K(X-XZ.)
e Kernel Properties: il K(x-Xo)
Normalized j K(x)dx =1
Symmetric

Rd
| xK(x)dx=0
Rd

Exponential weight Decay HmHXHd K(x)=0

[




Examples of kernels

2
e Epanechnikov K, (x) = {C(l —Ix][) x| <1

0 otherwise
e Uniform Ku(x) — {(C) Ol:li);lglrj;iie

1
. _ —=||x||2
e Gaussian Kg(X) = ce 2




Mode selection

e Compute the gradient of distribution

X=X

VP(X)=%ZV/¢Z. zﬁ[zgl}. = o
=1 i=1

7 n window

i

2}

VP(X):lZV K(x-X,) K(X-Xl.):cl{
N i}

- g0 =K

_Zn:x.g{x_x"zj
— h _ . . .
VP(x)=0 > m=|— ] =0 5= x(D=x(+m(x)

& [Ieox
i h




Mean shift algorithm

e Searches a mode or local
maximum of density of a given

distribution from a point

Choose a search window (width and location)
Compute the mean of the data in the search window

Center the search window at the new mean location

Repeat until convergence
Converged point is a mode.

From every point do the same.
&. Set of points arriving at the same mode forms a segment




Mean shift analysis of histogram

e Compute the histogram 4(x), x=0,1,2,..N
e For each x determine the mode m(x) in the
histogram.
e Ensure monotonicity in m(x)=0,1,2,...,N
m(x1) < M(xy), for x4 < X,
e Prune spurious modes
sufficient support (brightness interval),

sufficient gap between adjacent distinct pair, and
sufficient strength (number of pixels).

e Get brightness interval for each mode




Mean shift analysis of
histogram and segmentation

2000

1500

1000

500
0

modes: yellow:[1,51]
32,67,117,130 red:[52,82]

2 blue:[83,128]
‘i‘ white:[129,256]



Segmentation results from
various approaches

T T T T T

2000

1500

1000

500

Mean Shift




Component Labeling
(Region growing)

e Partitioning connected image pixels into meaningful
non-overlapping sets.
e Neighborhood definition.
e 4-neighbor, 8-neighbor

0) 0) o 0)
o) 0) 0] 0)
0) 0] o 0)

4-neighbors 8-neighbors



Component Labeling

Form a graph with edges between neighboring pixels
having same labels.

Compute connected components.
Graph traversal algorithms

20 | 20 | 50 | 20
20 | 20 | 50 | 100
50 | 50 | 50 | 100
100

O
OO OO




Component Labeling

e Form graph with edges between neighboring pixels
having same labels.

o Compute connected components.
e Graph traversal algorithms

Do you require
an explicit

20 | 20 | 50 | 20 ‘graph

ion?

20 | 20 | 50 | 100 representation:
Can you

50 | 50 | 50 | 100 compute using

only the image

100 | 100 | 20 | 20 ” ‘_‘ array?




Examples of
omponents



?

iS missing

Why a part of river channel




Morphological watersheds

e Topographic interpretation of a point in the functional space
e Three types of points
Points belonging to a regional minimum

Points from which a water-drop will fall to a minimum
The set of such points corresponding to the regional minimum
forms the catchment basin (a segment)
= Connected

Points from which a water-drop is equally likely to fall toward
multiple minimum

Points are near the boundaries of the catchment basins and
adjacent basins need to be kept separated by building dams at
their meeting points.

- Core catchment area incrementally dilated from both side to detéct
the meetina points.




Simulating flooding process

e T(n): Set of points having brightness value < n
o X .o, Xra: Minimum and maximum brightness values

o (M, M,, .., M, }: The set of regional minima identified
for formation of catchment basin.
Each as a pit for forming catchment basin with flooded water.

o Ci(M;): Catchment basin of M; at level i
set of points connected to M; having brightness value <1
Cax(M): Full catchment basin of M,

e C(n): Union of catchment basins at level n;

Union of C,(M.)’s

The same as T(n) - {set of points building dam} 6




Watershed segmentation

e The process to keep the catchment basins
separated by building dams

at the meeting points of catchment basins while
water level rises from the bottom to top

from X, t0 X, .,

89



Flooding process and dam building

One connected
component

Two connected
components

Level i-1 U """""""" Level i
Build dam
e T(i-1): Number of e T(i): Number of connected
connected components: 2 component:; 1

90

Decrease of number of connected component in
consecutive levels indicates the event of dam building.




Watershed segmentation

C(i-1): Union of catchment basins at level i-1 having
T(i): Set of pixels having having brightness value < |
CX in)=T(Xin) and C(Xmax)=U C. (M)
Approach: Incrementally compute C(i) from C(i-1)
Start from C(X,,,;;) and Stop at C(X..)-
Perform connected component analysis from T(i)
Check each component g of T(i)
Perform g N C(i-1)
« Ifitis NULL - New catchment basin, include in C(i)
= If it is one component > No spill over, include q in C(i)

= If it is multiple components - Spill over takes place.

Expand each through dilation and build dam at meeting
points of expansion, and include those modified
components..

91



Building dam at meeting
points of expansion

e Dilate each component of g N C(i-1) in steps with a
constraint that only additional points from g are included
In those expanded components.

e SE: Disk of 8-Neighbor distance of radius 1, Size: 3x3

e The common points of multiple components are not
Included in the expanded components and are marked
for the separating dam.

e One pixel width
e Stop when q is completely covered

e A point belongs to either one of the components of C(i-1) or

to the dam.

92



Courtesy: Prof. P.P.Das, CSE, IITKGP

Dam Construction

o M~|, MZ: ;
e Sets of coordinates of points |i

In the two regional minima

o C,1(My), C1(My)

e Sets of coordinates of points
In the catchment basins
associated with M; M,, at
stage n-1 of flooding
(catchment basins up to the
flooding Ievel)

o C[n-1]=C4(My) L Cy1i(My)

[ ] First dilation
[l Second dilatior
[<] Dam points

93
Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008




Courtesy: Prof. P.P.Das, CSE, IITKGP

Dam Construction

e Atflooding step n-1, there are
two connected components. At

flooding step n, there is only one
connected component

The water between the two
catchment basins has
merged at flooding step n

Use “q” to denote the single

connected component
e Steps
Dilate C,, 41(M,), C,,.+(M,) by
the 3x3 SE, subject to: [ e

. Il Sccond dilati
Constrain SE to q 5] Da points
Dilation cannot merge the sets

94

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008



Courtesy: Prof. P.P.Das, CSE, IITKGP

Dam Construction

e The dam is constructed by the
points on which the dilation
would cause the sets being
dilated to merge.

Resulting one-pixel thick
connected path
e Setting the gray level at each
point in the resultant path to
max+1

[ ] First dilation

[l Sccond dilatior

[<] Dam points
95

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008



Courtesy: Prof. P.P.Das, CSE, IITKGP

Watershed segmentation: A
few tips and issues

e Instead of working on an image itself, this
technique is often applied on its gradient image.

Each object is distinguished from the background by its
up-lifted edges

96

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008



Watershed segmentation:
Typical results

III
4

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008

ab
cd

FIGURE 10.56

(a) Image of blobs.
(b) Image gradient.
(c) Watershed lines.
(d) Watershed lines
superimposed on
original image.
(Courtesy of Dr.

S. Beucher,
CMM/Ecole des
Mines de Paris.)

97



Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008

Watershed Segmentatlon Use
of markers

Over segmentation

e Use of marker
e A connected region defining the pit or the dam.
e Internal marker within object: Pit

A\ 98

o External marker in background: Dam



Example results using markers

ab

FIGURE 10.58 (a) Image showing internal markers (light gray regions) and external
markers (watershed lines). (b) Result of segmentation. Note the improvement over Fig.
{}é 10.47(b). (Courtesy of Dr. S. Beucher, CMM/Ecole des Mines de Paris.)

o Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008



Another Example

a) Original Image

b) Gradient Image:
3X3 Sobel Edge
Detector

0 Raw Watershed

d) Controlled
Watershed with
Region Marking

@ 100
Courtesy: Prof. P.P. Das, CSE, IIT Kharagpur



Summary

e Meaningful partitioning of image pixels
Edges, Regions
e Edge operators: First order and Second order derivatives
(Laplacian)
Marr-Hildreth, Canny
e Analysis of histogram

Binarization through classification
Bayes’ classification rule applied

Binarization through maximizing interclass variances.
Otsu thresholding

By finding peaks / valleys and declare intervals of
brightness value for a segment.

Gaussian mixture model
Mean shift algorithm




Summary

e K-means clustering in the feature space, if the cluster
number known.

e Component labeling for connected components.
e \Watershed segmentation algorithm







