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Image smoothing / enhancement: 
Gaussian Filtering

l Low pass filtering

l Gaussian filter
l Freq. / Spatial domain

l More complex filters
l Using difference of Gaussian

l LPF, BPF, HPF

l DoG in spatial domain, too!
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Filtering in 1-D the transform domain

l Use sufficient 0 padding at the both end to make circular 
convolution equivalent to linear convolution
l To take care of boundary effect.

l The length of f(n) and h(n) should be the same.

l H(k) usually provided as symmetric about the center.
l 0th freq. at the N/2 th element.

l Center F(k) as Fc(k) by multiplying f(n) with (-1)n ß (k0=N/2)
l Obtain G(k)= H(k) . Fc(k)
l Multiply G(k) by (-1)k and perform IDFT to get g(n).ß (n0=N/2)

F(k) H(k) G(k)=H(k) F(k)
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• Freq. Shifting

• Phase Shifting



Low pass filters
l Ideal LPF

l H(u,v) =1 , if D(u,v) < D0

                = 0,    Otherwise

l Use centered freq. transform:
l D (u,v) = [(u – M/2)2+ (v –N/2)2]1/2

l Make DFT of image also centered 

l Perform filtering
l Not very practical

l Blurring and ringing effect prominent!

l Sharp discontinuity in frequency response!
l Impulse response in the form of a Sinc function.
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Butterworth Low Pass Filters
l Transfer function of order n:

l Avoids sharp discontinuity

l 50% of maximum as D(u,v)=D0
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𝐻 𝑢, 𝑣 =
1

1 + 𝐷(𝑢, 𝑣)
𝐷1

*,

Courtesy: R.C. Gonzalez and R.E Woods © 1992-2008  

• First order: No ringing
• Second order: Ringing imperceptible
• Higher the order ringing effect higher.

Usually BPLF of order 2 
recommended.
Similarly we may have 
HPF and BPF.



Homomorphic filtering
l Let f(x,y)=i(x,y) r(x,y)

l i(x,y): Illumination variation
l Slow / Low frequency 

l r(x,y): reflectance variation
l High / High  frequency

l Make additive  component in the log domain

l Apply filtering by suppressing low frequencies 
and enhancing high frequencies.
l Dynamic range compression coupled with contrast 

enhancement

l Back to the original domain by exponentiation. 6



Homomorphic filtering
l A typical example

l 𝛾L<1, 𝛾H>1
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log(.) DFT

H(u,v)

exp(.) IDFT

f(x,y)

g(x,y)
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Homomorphic filtering: Typical 
example
l Simultaneous dynamic range compression and contrast 

enhancement
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Band reject filters 
(BRF)

l Ideal

l Butterworth

l Gaussian
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Used for removing periodic noise.



Notch filters
l A notch filter rejects or passes frequencies in a predefined 

frequency about the center of the frequency rectangle.

l Zero phase shift filter should be symmetric about the 
origin.
l If there exists a notch at center (u0,v0), there must be  a notch        

at (-u0,-v0).

l A general form:

l e.g. using Butterworth HPFs
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A degradation model and restoration
l Degradation function:

l Identity (No degradation), 
Linear filter (Motion Blur), 
Transformation of a 
functional value

l Noise model
l White, Gaussian, 

Rayleigh, 

n(x,y)

g(x,y)f(x,y) fa(x,y)Degradation 
function

H(.)

Restoration 
filters
W(.)+

𝑔 𝑥, 𝑦 = ℎ 𝑥, 𝑦 ∗ 𝑓 𝑥, 𝑦 + 𝑛	(𝑥, 𝑦)
l Linear degradation model.

l To design a restoration filter w(x,y)
l  such that w(x,y)*g(x,y) = fa(x,y) close 

to f(x,y).

l To minimize

𝐸( 𝑓 𝑥, 𝑦 − 𝑓"(𝑥, 𝑦) #)

If H(.) is the identity 
function, the task is 
simply noise cleaning.

𝐸( 𝐹 𝑢, 𝑣 − 𝐹G(𝑢, 𝑣) *)
Objective function in Freq. domain?



Restoration in the absence of noise

l Inverse filtering: W(u,v) = 1/H(u,v)
l Problem with zeros and low values in H(u,v)

l Minimize E(||F(u,v) - Fa(u,v) ||2) 

              = E(||F(u,v) - W(u,v) H(u,v) F(u,v) ||2) 
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𝑔 𝑥, 𝑦 = ℎ 𝑥, 𝑦 ∗ 𝑓 𝑥, 𝑦

H(u,v)
W(u,v)

?
F(u,v)

G(u,v)=H(u,v) F(u,v)

G(u,v) Fa(u,v)



Restoration in the absence of noise

l Power Spectrum of the image: Sf(u,v)=||F(u,v)||2=F*(u,v)F(u,v)
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H(u,v)
W(u,v)

?
F(u,v) G(u,v) Fa(u,v)

l To minimize Ew=E(||F(u,v) - W(u,v) H(u,v) F(u,v) ||2) 

𝜕𝐸7
𝜕𝑊(𝑢, 𝑣) = 0

For convenience, F(u,v) written as F and the same  for all others.

Ew=||F||2- (W*H*+WH)||F||2+||W||2||H||2||F||2

Pretending W* 
constant for W

-HSf+W*||H||2Sf=0 W=H*/||H||2=1/H

Inverse filtering!
The same problem!



Restoration in the presence of 
noise

l Power Spectrum of the original image:  Sf= ||F||2 =F*F
l Power Spectrum of the noisy image: Sg= ||G||2 =G*G

l Sg = ||H||2 ||F||2 +H*F*N+HFN*+ ||N||2 

l As noise assumes to be uncorrelated: E(F*N)=E(N*F)=0
l Hence, Sg = ||H||2 ||F||2 +||N||2 

W(u,v)
?

G(u,v)=H(u,v)F(u,v)+N(u,v) Fa(u,v)

l To minimize Ew=E(||F – WG||2) 

l Ew= E(||F ||2-FW*G*-WGF*+ ||W||2 ||G||2 ) 
l = E(||F ||2-FW*G*-WHF*F-WF*N+ ||W||2 ||G||2 ) 

𝜕𝐸7
𝜕𝑊(𝑢, 𝑣)

= 0 -HSf+W* (||H||2Sf +Sn)=0

W=(H*Sf )/ (||H||2Sf +Sn)
= ||H||2 Sf + Sn



Weiner Filter (Least square error 
filter)

l Solution in frequency domain:

n(x,y)

g(x,y)f(x,y) fa(x,y)
h(x,y) w(x,y)+

W=(H*Sf )/ (||H||2Sf +Sn)

𝑊 =
𝐻∗

𝐻 # + 𝑆%𝑆&

𝑊 =
𝐻∗

𝐻 # + 𝐾
Noise to Signal Ratio

𝑊 =
1
𝐻

𝐻 #

𝐻 # + 𝐾 Weighted Inverse filter!



Tasks of restoration

l Model degradation:
l Design / derive  h(x,y)

l Model Noise
l Identify PDF and estimate parameters

l Derive W or w(x,y)
l Apply filtering: fa(x,y)= w(x,y)* g(x,y)

n(x,y)

g(x,y)f(x,y) fa(x,y)
h(x,y) w(x,y)+

𝑊 =
𝐻∗

𝐻 # + 𝑆%𝑆&



Degradation of a defocused 
image
l Defocused image: The projected point is not sharp. 

l e.g. The projection forms a circle of radius r.
l Spatial resolution along x: ∆x and y: ∆y

h(i , j)= 1/N, (i. ∆x )2+(j. ∆y )2 < r
       = 0     Otherwise

h(i,j)

N: Total number of 
pixels within the circle



Degradation due to motion blur
l Motion blur: Movement of camera, Movement of 

object.
l e.g. The camera moving with a velocity vx in the 

direction of x
l Exposure time: t

l Spatial resolution along x: ∆x

l Number of pixels covered in a shot due to movement: 
N=(vxt) / ∆x

h(i,j)= 1/N,  -(N-1) < i < 0
       = 0     Otheriwse

h(I,j)



Degradation model for a general 
planar rigid body motion 

l Time varying translational motion vector : x0(t) i + y0(t) j

l Duration of exposure: T
l Shutter opening and closing takes place instantaneously

l Blurred image g(x,y) given by:
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𝑔 𝑥, 𝑦 = 3
'

(
𝑓(𝑥 − 𝑥' 𝑡 , 𝑦 − 𝑦' 𝑡 ) 𝑑𝑡

Fourier transform of g(x,y):

𝐺 𝑢, 𝑣 = 3
'

(
𝐹(𝑢, 𝑣)𝑒)*#+(-.! / 012! / ) 𝑑𝑡



Degradation model for a general 
planar rigid body motion 

𝑔 𝑥, 𝑦 = 3
'

(
𝑓(𝑥 − 𝑥' 𝑡 , 𝑦 − 𝑦' 𝑡 ) 𝑑𝑡

𝐺 𝑢, 𝑣 = 3
'

(
𝐹(𝑢, 𝑣)𝑒)*#+(-.! / 012! / ) 𝑑𝑡

𝐺 𝑢, 𝑣 = 𝐹 𝑢, 𝑣 [3
'

(
𝑒)*#+ -.! / 012! / 𝑑𝑡	]

H(u,v)



Motion blur special cases
l Uniform linear motion in horizontal direction:

l x0(t)=at/T,  and y0(t)=0

21
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Motion blur special cases
l Uniform linear motion in a plane:

l x0(t)=at/T,  and y0(t)= bt/T
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𝐻 𝑢, 𝑣 = 3
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=
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Atmospheric degradation model 
(Hufnagel & Stanley (1964))

l k is a constant that depends on the turbulence.

l Almost the form of a Gaussian function 

l LPF

23

𝐻 𝑢, 𝑣 = 𝑒)5(-"01")
#
$

How do you relate them in discrete domain?

Use normalized frequency: k/N for sequence of length N.



Noise models
l Gaussian:

l Rayleigh:

l Erlang 
(Gamma): 
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𝑏 − 1 !
𝑒)". 	 𝑓𝑜𝑟	𝑥 ≥ 0

0	 𝑓𝑜𝑟	𝑥 < 𝑎

𝑚𝑒𝑎𝑛 = 𝜇	 𝑣𝑎𝑟 = 𝜎*

𝑚𝑒𝑎𝑛 = 𝑎 +
𝜋𝑏
4

𝑣𝑎𝑟 =
𝑏(4 − 𝜋)

4

𝑚𝑒𝑎𝑛 =
𝑏
𝑎
𝑣𝑎𝑟 =

𝑏
𝑎*

Variance is the measure of noise power.
White noise with a pdf has the same power 
at every freq.



Noise models
l Exponential:

l Uniform:

l Impulse (Salt 
and Pepper): 
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𝑝 𝑥 = P
1
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Bipolar impulse

𝑚𝑒𝑎𝑛 =
1
𝑎

𝑣𝑎𝑟 =
1
𝑎*

𝑚𝑒𝑎𝑛 =
𝑎 + 𝑏
2

𝑣𝑎𝑟 =
𝑏 − 𝑎 *
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Estimation of noise
l Study relatively flat (constant) region and study the 

histogram.

l The shape of histogram may indicate appropriate 
PDF to be chosen.

l Compute mean and variance of the flat region.

l Relate to them to the parameters of the 
distribution. (Optional)

l Make robust estimation of variance (by sampling 
and estimation using the central limit theorem)

l Use variance for the noise power at every 
frequency (modeling as white noise) 26



Noise removal: linear and nonlinear 
filters exploiting local statistics

l Arithmetic mean.

l Geometric mean.

l Harmonic mean.

l Contraharmonic 
mean.

27

l Order Statistics.

l Median

l Max
l Min

l Mid-point
l Average of Max and Min.

l Alpha-trimmed mean
l Mean excluding top (d/2) 

and bottom (d/2) in the 
rank order.

1
𝑁
T
H91
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H91
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1
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0!: 1
𝑥H

∑𝑥H
;&:

∑𝑥H
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Q: Order of filter
Q= 0 (A.M.), Q= -1 (H.M.) 



Adaptive filter for restoration
l Exploit local statistics

l Local mean: 𝛍   Local variance: 𝛔2 
l  Local noise variance: 𝜂2

l Pixel value: g(x,y)
l Desirable

l If 𝜂2=0 return g(x,y)
l If 𝛔2 high return close to g(x,y)
l If 𝜂2 = 𝛔2  return local mean 𝛍

l Adaptive expression

28𝑓" 𝑥, 𝑦 = 𝑔 𝑥, 𝑦 −
𝜂#

𝝈𝟐
(𝑔 𝑥, 𝑦 − 	𝝁)



Constrained least 
squares filtering
l Limitations of Wiener Filtering: 

l Power spectra of  the undegraded image and 
noise required to be known.

l Based on minimizing a statistical criterion.

l Optimization in average sense

l Problem statement reformulated for taking care of 
individual image separately.
l Criteria set from filtering in spatial domain

l But solution obtained  in the frequency domain

29

𝑊 =
𝐻∗

𝐻 # + 𝑆%𝑆&



Constrained least squares 
filtering in Spatial domain

l Consider degraded and undegraded  image in the form of 
a derasterized vector

l g and  f of length N, respectively.
l Let the degradation filter response given by a vector

l  h of length N

l The noise at each point expressed by a vector 
l 𝜂 of length N

l The convolution operation can be expressed by a matrix 
operation as follows:
l g=Hf+ 𝜂
l H is a matrix of dimension NxN 30



Optimization problem
l Minimize a smoothness criteria C (measured as sum of 

squares of Laplacians) subject to keeping noise at a 
desired level

Subject to the constraint

or 
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𝐶 = T
I91
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T
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;!:

𝛻*𝑓(𝑥, 𝑦) *

𝐠 − 𝐇𝐟 * = 𝛈 *

𝑎𝑏𝑠( 𝐠 − 𝐇𝐟 * − 𝛈 *) < 𝑎2

A small 
positive 
value

Residual difference



Frequency domain solution

l 𝛾: a parameter, may be chosen iteratively such that the 
residual difference < a2

l L(u,v) is the Fourier Transform of the Laplacian operator 
l(x,y)
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𝐹 𝑢, 𝑣 =
𝐻∗(𝑢, 𝑣)

|𝐻 𝑢, 𝑣 |* + 𝛾|𝐿 𝑢, 𝑣 |*
𝐺(𝑢, 𝑣)

𝑙 𝑥, 𝑦 =
0 −1 0
−1 4 −1
0 −1 0



Summary
l Filtering for noise removal 

l Degradation model

l Weiner (LSE) filter
l to model degradation filter and noise, and then obtain the 

LSE filter.

l Apply Weiner filter on degraded image to restore it.
l Modeling motion blur and defocusing.

l Noise model
l Use of various local statistics for removing noise.

l Adaptive filter exploiting local statistics and variance of 
noise.

l Constrained least squares filters
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Thank You


