
10-02-2016

1

Character String

1

What we should learn about strings

– Representation in C

– String Literals

– String Variables

– String Input/Output
• printf, scanf, gets, fgets, puts, fputs

– String Functions
• strlen, strcpy, strncpy, strcmp, strncmp, strcat, strncat,

strchr strrchr strstr strspn strcspn strtokstrchr, strrchr, strstr, strspn, strcspn, strtok

– Reading from/Printing to Strings
• sprintf, sscanf

10-02-2016

2

Introduction

• A string is an array of characters.
– Individual characters are stored in memory in

ASCII code.

– A string is represented as a sequence of
characters terminated by the null (‘\0’)
character.

3

‘\0’leH ol“Hello” 

String Literals

• String literal values are represented by sequences of
characters between double quotes (“)

• Examples
– “” represents empty string

– “hello”

• “a” versus ‘a’

– ‘a’ is a single character value (stored in 1 byte) as the ASCIIa is a single character value (stored in 1 byte) as the ASCII
value for the letter, a

– “a” is an array with two characters, the first is a, the second
is the character value \0

10-02-2016

3

Referring to String Literals

• String literal is an array, can refer to a single
character from the literal as a character

• Example:
printf(”%c”, ”hello”[1]);

outputs the character ‘e’

D i il ti C t f h t i• During compilation, C creates space for each string
literal (# of characters in the literal + 1)

Duplicate String Literals

• Each string literal in a C program is stored at a
different location

• So even if the string literals contain the same string,
they are not equal (in the == sense)

• Example:

– char string1[6] = “hello”;

– char string2[6] = “hello”;

– but string1 does not equal string2 (they are stored
at different locations)

10-02-2016

4

Declaring String Variables

• A string is declared like any other array:
char string-name [size];

– size determines the number of characters in
string_name.

• When a character string is assigned to a
character array, it automatically appends the null
character (‘\0’) at the end of the string.

size should be equal to the number of

7

– size should be equal to the number of
characters in the string plus one.

Examples

char name[30];

char city[15];

char dob[11];

• A string may be initialized at the time of
declaration.

char city[15] = “Calcutta”;

Equivalent

8

char city[15] Calcutta ;

char city[15] = {‘C’, ‘a’, ‘l’, ‘c’, ‘u’,

‘t’, ‘t’, ‘a’};

char dob[] = “12-10-1975”;

10-02-2016

5

Changing String Variables

• Cannot change string variables connected to string
constants, but can change pointer variables that are , g p
not tied to space.

• Example:
char *str1 = “hello”; /* str1 unchangeable */

char *str2 = “goodbye”; /* str2 unchangeable */

char *str3; /* Not tied to space */

str3 = str1; /* str3 points to same space s1 connected to */

str3 = str2;

Changing String Variables (cont)

• Can change parts of a string variable

char str1[6] = “hello”;

str1[0] = ‘y’;[] y ;

/* str1 is now “yello” */

str1[4] = ‘\0’;

/* str1 is now “yell” */

• Important to retain delimiter (replacing str1[5] in the original
string with something other than ‘\0’ makes a string that does
not end)

• Have to stay within limits of array

10-02-2016

6

Reading Strings from the Keyboard

• Two different cases will be considered:
– Reading words

– Reading an entire line

11

Reading “words”

• scanf can be used with the “%s” format
specification.

char name[30];
:
:
scanf (“%s”, name);

– The ampersand (&) is not required before the
variable name with “%s”.

• “name” represents an address.

– The problem here is that the string is taken to

12

The problem here is that the string is taken to
be upto the first white space (blank, tab,
carriage return, etc.)

• If we type “Rupak Biswas”
• name will be assigned the string “Rupak”

10-02-2016

7

Reading a “line of text”

• In many applications, we need to read in
an entire line of text (including blank
spaces).

• We can use the getchar() function for the
purpose.

13

char line[81], ch;
int c=0;
:
:
ddo

{
ch = getchar();
line[c] = ch;
c++;

}
while (ch != ‘\n’);

Read characters
until CR (‘\n’) is
encountered

14

c = c – 1;
line[c] = ‘\0’;

Make it a valid
string

10-02-2016

8

Reading a line :: Alternate Approach

char line[81];
:
:
scanf (“%[ABCDEFGHIJKLMNOPQRSTUVWXYZ]”, line);

char line[81];
:

 Reads a string containing uppercase
characters and blank spaces

15

:
scanf (“%[^\n]”, line);

 Reads a string containing any characters

More on String Input

• Edit set input %[ListofChars]
– ListofChars specifies set of characters (called scan set)
– Characters read as long as character falls in scan setCharacters read as long as character falls in scan set
– Stops when first non scan set character encountered
– Note, does not ignored leading white space
– Any character may be specified except]
– Putting ^ at the start to negate the set (any character BUT list is

allowed)

• Examples:p
scanf (“%[+0123456789]”, Number);
scanf (“%[^\n]”,Line); /* read until newline char */

10-02-2016

9

Writing Strings to the Screen

• We can use printf with the “%s” format
specification.

char name[50];

:

:

printf (“\n %s”, name);

17

Input / Output Example

#include <stdio.h>

void main()void main()

{

char LastName[11];

char FirstName[11];

printf("Enter your name (last , first): ");

scanf("%10s%*[^,],%10s", LastName, FirstName);

printf("Nice to meet you %s %s\n", FirstName, LastName);

}

10-02-2016

10

String Functions

19

Processing Character Strings

• There exists a set of C library functions for
character string manipulation.
– strcpy :: string copy

– strlen :: string length

– strcmp :: string comparison

– strtcat :: string concatenation

• It is required to add the line

20

#include <string.h>

10-02-2016

11

strcpy()

• Works very much like a string assignment
operator.

char *strcpy (char *str1, char *str2);

– Assigns the contents of str2 to str1.

– Returns address of the destination string.

• Examples:
strcpy (city, “Calcutta”);

21

strcpy (city, mycity);

• Warning:
– Assignment operator do not work for strings.

city = “Calcutta”;  INVALID

strlen()

• Counts and returns the number of characters
in a string.

int strlen (char *str);

• Example:
len = strlen (string);

/* Returns an integer */

22

– The null character (‘\0’) at the end is not counted.

– Counting ends at the first null character.

10-02-2016

12

char city[15];
int n;
:
:
strcpy (city, “Calcutta”);
n = strlen (city);

23

n is assigned 8

strcmp()

• Compares two character strings.
int strcmp(char *str1, char *str2);

– Compares the two strings and returns 0 if they
are identical; non-zero otherwise.

• Examples:
if (strcmp(city, “Delhi”) == 0)

{ …… }

24

if (strcmp(city1, city2) != 0)
{ …… }

10-02-2016

13

• Actually, the function returns the difference in
ASCII values of the first letter of mismatch.

– Less than 0

• If the ASCII value of the character they differ at is smaller for str1,
or str2 is longer than str1

– Greater than 0

• If the ASCII value of the character they differ at is greater for str1,
or str1 is longer than str2

– Equal to 0– Equal to 0

• If the two strings are identical

25

String Comparison
strcmp examples:

strcmp(“hello” ”hello”) returns 0strcmp(“hello”,”hello”) -- returns 0

strcmp(“yello”,”hello”) -- returns value > 0

strcmp(“Hello”,”hello”) -- returns value < 0

strcmp(“hello”,”hello there”) -- returns value < 0

strcmp(“some diff”,”some dift”) -- returns value < 0

expression for determining if two strings s1, s2 hold the same string value:

!strcmp(s1 s2)!strcmp(s1, s2)

10-02-2016

14

String Comparison

Sometimes we only want to compare first n chars:y

int strncmp(char *s1, char *s2, int n)

Works the same as strcmp except that it stops at the nth character

looks at less than n characters if either string is shorter than n

strcmp(“some diff”,”some DIFF”) -- returns value > 0

strncmp(“some diff”,”some DIFF”,4) -- returns 0strncmp(some diff , some DIFF ,4) returns 0

String Comparison (ignoring case)

int strcasecmp(char *str1, char *str2)
• similar to strcmp except that upper and lower case

characters (e.g., ‘a’ and ‘A’) are considered to be equal

int strncasecmp(char *str1, char *str2, int n)
• version of strncmp that ignores case

10-02-2016

15

strcat()

• Joins or concatenates two strings
together.

char *strcat (char *str1, char *str2);

– str2 is appended to the end of str1.

– The null character at the end of str1 is
removed, and str2 is joined at that point.

• Example: ‘\0’imA t

29

strcpy(name1, “Amit ”);

strcpy(name2, “Roy“);

strcat(name1, name2);

‘\0’yoR

imA t ‘\0’yoR

Example:: count uppercase

/* Read a line of text and count the number of
uppercase letters */
#include <stdio.h>
#include <string.h>
main()
{

char line[81];
int i, n, count=0;
scanf (“%[^\n]”, line);
n = strlen (line);
for (i=0; i<n; i++)

if (isupper(line[i])

30

if (isupper(line[i])
count++;

printf (“\n The number of uppercase letters in
the string %s is %d”, line, count);
}

10-02-2016

16

Example:: compare two strings

#include <stdio.h>

int my strcmp(char s1[] char s2[])

Parameters passed as character array

int my_strcmp(char s1[],char s2[])

{

int i=0;

while(s1[i]!='\0' && s2[i]!='\0'){

if(s1[i]!=s2[i]) return(s1[i]-s2[i]);

else i++;

Compare character pairs till the end of a string

31

;

}

return(s1[i]-s2[i]);

}

Return immediately if they
are not equal.

main()
{

char string1[100],string2[100];

printf("Give two strings \n");
scanf("%s%s" string1 string2);scanf(%s%s ,string1,string2);

printf("Comparison result: %d \n",
my_strcmp(string1,string2));

}

32

Give two strings
IITKGP IITMUMBAI
Comparison result: -2

Give two strings
KOLKATA KOLKATA
Comparison result: 0

10-02-2016

17

Searching for a Character/String

char *strchr(char *str, int ch)
t i t (h *) t th fi t f h i• returns a pointer (a char *) to the first occurrence of ch in

str
• returns NULL if ch does not occur in str
• can subtract original pointer from result pointer to

determine which character in array

char *strstr(char *str, char *searchstr)
• similar to strchr but looks for the first occurrence of the• similar to strchr, but looks for the first occurrence of the

string searchstr in str

char *strrchr(char *str, int ch)
• similar to strchr except that the search starts from the end

of string str and works backward

Printing to a String

• The sprintf function allows us to print to a string
argument using printf formatting rules

• First argument of sprintf is string to print to,
remaining arguments are as in printf

Example:
char buffer[100];

sprintf (buffer ”%s %s” LastName FirstName);sprintf (buffer, ”%s, %s”, LastName, FirstName);

if (strlen(buffer) > 15)

printf(“Long name %s %s\n”, FirstName, LastName);

10-02-2016

18

Reading from a String

• The sscanf function allows us to read from a string g
argument using scanf rules

• First argument of sscanf is string to read from,
remaining arguments are as in scanf

Example:
char buffer[100] = “A10 50.0”;

sscanf (buffer,”%c%d%f”, &ch, &inum, &fnum);

/* puts ‘A’ in ch, 10 in inum and 50.0 in fnum */

Example: Duplicate Removal
• Write a C function that takes a string as an argument and modifies the string

so as to remove all consecutive duplicate characters, e.g., mississippi ->
misisipi.

void remove_duplicates(char word[]) {
int k, j;
char prev = '\0';
for (k = j = 0; word[k]!='\0'; k++) {

if (prev != word[k]) word[j++]=word[k];
prev = word[k];prev = word[k];

}
word[j] = '\0';

}

36

