
1/28/2016

1

What happens for recursive calls?

• What we have seen ….

– Activation record gets pushed into the stack
when a function call is made.when a function call is made.

– Activation record is popped off the stack when
the function returns.

• In recursion, a function calls itself.

– Several function calls going on, with none of
the function calls returning back.

A ti ti d h d t th t k

Programming and Data Structure 51

• Activation records are pushed onto the stack
continuously.

• Large stack space required.

• Activation records keep popping off, when the
termination condition of recursion is reached.

• We shall illustrate the process by an
example of computing factorial.

– Activation record looks like:

Return Addr

Return Value

Local
Variables

Programming and Data Structure 52

1/28/2016

2

Example:: main() calls fact(3)

main()
{

int n;

int fact (n)
int n;
{

if (n == 0)

n = 3;
printf (”%d \n”, fact(n));

}

Programming and Data Structure 53

if (n 0)
return (1);

else
return (n * fact(n-1));

}

n = 1 n = 1

RA .. fact

1

n = 0

n = 1

TRACE OF THE STACK DURING EXECUTION

fact

n = 3 n = 3

RA .. fact

-

n = 2

n = 3

RA .. fact

-

n = 2

RA .. fact

-

n 1

n = 3

RA .. fact

-

n = 2

RA .. fact

-

n 1

n = 3

RA .. fact

-

n = 2

RA .. fact

1*1 = 1

n 1

n = 3

RA .. fact

2*1 = 2

n = 2

3*2 6

n = 3

main
calls
fact

fact
returns
to main

Programming and Data Structure 54

RA .. main

-

RA .. main

-

RA .. main

-

RA .. main

-

RA .. main

-

RA .. main

-

RA .. main

3*2 = 6

1/28/2016

3

Do Yourself

• Trace the activation records for the following version of

Fibonacci sequence.
#include <stdio h>#include <stdio.h>
int f (int n)
{

int a, b;
if (n < 2) return (n);
else {
a = f(n-1);
b = f(n-2); Return Addr

(either main

Return Value

Local
Variables
(n, a, b)

X

Programming and Data Structure 55

return (a+b); }
}

main() {
printf(“Fib(4) is: %d \n”, f(4));

}

(either main,
or X, or Y)Y

main

Storage Class of Variables

Programming and Data Structure 56

1/28/2016

4

What is Storage Class?

• It refers to the permanence of a variable,
and its scope within a program.

• Four storage class specifications in C:
– Automatic: auto

– External: extern

– Static: static

– Register: register

Programming and Data Structure 57

Automatic Variables

• These are always declared within a function
and are local to the function in which they are
declared.
– Scope is confined to that function.

• This is the default storage class specification.
– All variables are considered as auto unless

explicitly specified otherwise.

Programming and Data Structure 58

– The keyword auto is optional.

– An automatic variable does not retain its value
once control is transferred out of its defining
function.

1/28/2016

5

#include <stdio.h>

int factorial(int m)

main()

{

auto int n;int factorial(int m)

{

auto int i;

auto int temp=1;

for (i=1; i<=m; i++)

temp = temp * i;

return (temp);

auto int n;

for (n=1; n<=10; n++)

printf (“%d! = %d \n”,

n, factorial (n));

}

Programming and Data Structure 59

(p);

}

Static Variables

• Static variables are defined within individual
functions and have the same scope as automatic
ariablesvariables.

• Unlike automatic variables, static variables retain
their values throughout the life of the program.
– If a function is exited and re-entered at a later time, the

static variables defined within that function will retain their
previous values.

– Initial values can be included in the static variable

Programming and Data Structure 60

Initial values can be included in the static variable
declaration.

• Will be initialized only once.

• An example of using static variable:
– Count number of times a function is called.

1/28/2016

6

#include <stdio.h>

int factorial (int n)

{

static int count=0;

EXAMPLE 1

static int count=0;

count++;

printf (“n=%d, count=%d \n”, n, count);

if (n == 0) return 1;

else return (n * factorial(n-1));

}

main()

Programming and Data Structure 61

main()

{

int i=6;

printf (“Value is: %d \n”, factorial(i));

}

• Program output:
n=6, count=1

n=5, count=2

n=4, count=3

n=3, count=4

n=2, count=5

n=1, count=6

n=0, count=7

V l i 720

Programming and Data Structure 62

Value is: 720

1/28/2016

7

#include <stdio.h>

int fib (int n)

{

static int count=0;

EXAMPLE 2

static int count=0;

count++;

printf (“n=%d, count=%d \n”, n, count);

if (n < 2) return n;

else return (fib(n-1) + fib(n-2));

}

main()

Programming and Data Structure 63

main()

{

int i=4;

printf (“Value is: %d \n”, fib(i));

}

• Program output:
n=4, count=1

f(4)

f(3) f(2)n=3, count=2

n=2, count=3

n=1, count=4

n=0, count=5

n=1, count=6

n=2, count=7

f(3) f(2)

f(1)f(2) f(0)f(1)

f(1) f(0)

Programming and Data Structure 64

n=1, count=8

n=0, count=9

Value is: 3 [0,1,1,2,3,5,8,….]

1/28/2016

8

Register Variables

• These variables are stored in high-speed
registers within the CPU.
– Commonly used variables may be declared as

register variables.

– Results in increase in execution speed.

– The allocation is done by the compiler.

Programming and Data Structure 65

External Variables

• They are not confined to single functions.

• Their scope extends from the point of p p
definition through the remainder of the
program.
– They may span more than one functions.

– Also called global variables.

• Alternate way of declaring global

Programming and Data Structure 66

y g g
variables.
– Declare them outside the function, at the

beginning.

1/28/2016

9

#include <stdio.h>

int count=0; /** GLOBAL VARIABLE **/

int factorial (int n)

{{

count++;

printf (“n=%d, count=%d \n”, n, count);

if (n == 0) return 1;

else return (n * factorial(n-1));

}

main() {

Programming and Data Structure 67

main() {

int i=6;

printf (“Value is: %d \n”, factorial(i));

printf (“Count is: %d \n”, count);

}

