Some Applications of Stack

Arithmetic Expressions
Polish Notation

01-04-2016

What is Polish Notation?

* Conventionally, we use the operator
symbol between its two operands in an
arithmetic expression.

A+B C-D*E A*(B+C)
— We can use parentheses to change the
precedence of the operators.
— Operator precedence is pre-defined.

* This notation is called INFIX notation.

— Parentheses can change the precedence of
evaluation.

— Multiple passes required for evaluation.

e Polish notation

— Named after Polish mathematician Jan
Lukasiewicz.

— Polish POSTFIX notation

» Refers to the notation in which the operator symbol
is placed after its two operands.

AB+ (D= AB*CD+/

— Polish PREFIX notation

» Refers to the notation in which the operator symbol
is placed before its two operands.

+AB *CD /*AB-CD

01-04-2016

01-04-2016

How to convert an infix expression to Polish
form?

* Write down the expression in fully parenthesized
form. Then convert stepwise.

» Example:
A+(B*C)/D-(E*F)-G

(((A+((B*C)/D))-(E*F))-C)

e Polish Postfix form:
ABC*D/+EF™* -G -

e Polish Prefix form:
— Tryitout

* Advantages:
— No concept of operator priority.
» Simplifies the expression evaluation rule.
— No need of any parenthesis.
» Hence no ambiguity in the order of evaluation.

— Evaluation can be carried out using a single
scan over the expression string.

» Using stack.

Evaluation of a Polish Expression

* Can be done very conveniently using a
stack.
— We would use the Polish postfix notation as
illustration.

* Requires a single pass through the expression string
from left to right.

» Polish prefix evaluation would be similar, but the
string needs to be scanned from right to left.

while (not end of string) do
{
a = get_next_token();
if (a is an operand)
push (a);
if (a iIs an operator)
{
y = popQ; X = popQ);
push (x “a’ y);
3
ks
return (popQ));

01-04-2016

Evaluate:

106 3 - *7 4 + -

Scan string from left to right:

10:

6:
&z

push (10)
push (6)
push (3)

y = popQ =

x = popQ
push (x-y)
y = popQ
x = popQ
push (x*y)
push (7)

push (4)

y = popQ
x = popQ
push (x+y)
y = popQ
x = popQ
push (x-y)

11
30

Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:

10

10 6
10 6 3
10 6
10

10 3
10
EMPTY
30

30 7
30 7 4
30 7
30

30 11 5
30 Final result

ewpTy " |in stack
19

Parenthesis Matching

10

01-04-2016

The Basic Problem

* Given a parenthesized expression, to test
whether the expression is properly
parenthesized.

— Whenever a left parenthesis is encountered, it
is pushed in the stack.

— Whenever aright parenthesis is encountered,
pop from stack and check if the parentheses
match.

— Works for multiple types of parentheses

(. {} 1]

11

whille (not end of string) do
{
a = get_next_token();
if (ais “(CC or “{® or “[°)
push (a);
if (ais “)” or “}” or “17)
{
it (isempty(Q)) {
printf (’Not well formed”);
exit();
}
X = popQ);
if (a and x do not match) {
printf (’Not well formed”);
exit();
}
}
}
iT (not isempty())
printf (’Not well formed™);

12

01-04-2016

Given expression: (a + (b —c) * (d + e))
Search string for parenthesis from left to right:

(: push (“(°) Stack: (

(: push (“(°) Stack: ((

): x = pop() = (Stack: (MATCH
(: push (“(°) Stack: ((

): x = pop() = (Stack: (MATCH
): x = pop() = (Stack: EMPTY MATCH

Given expression: (a + (b — c)) * d)
Search string for parenthesis from left to right:

(: push (“(°) Stack: (

(: push (“(°) Stack: ((

): x = pop() = (Stack: (MATCH

): x = pop() = (Stack: EMPTY MATCH

): x = pop() = (Stack: ? MISMATCH

13

Converting an INFIX expression to
POSTFIX

14

01-04-2016

Basic Idea

* Let Q denote an infix expression.
— May contain left and right parentheses.

— Operators are:

e Highest priority: N (exponentiation)
e Then: * (multiplication), / (division)
e Then: + (addition), — (subtraction)

— Operators at the same level are evaluated from
left to right.

* In the algorithm to be presented:
— We begin by pushing a ‘(" in the stack.
— Also add a ‘)’ at the end of Q.

15

The Algorithm (Q:: given infix expression,
P:: output postfix expression)

push (*(°);
Add “)” to the end of Q;
while (not end of string in Q do)
{
a = get_next_token();
if (a is an operand) add it to P;
if (ais “(C) push(a);
if (a is an operator)

{
Repeatedly pop from stack and add to P each
operator (on top of the stack) which has the
same or higher precedence than “a”;
push(a);

3

16

01-04-2016

if (a is <))

{
Repeatedly pop from stack and add to P each
operator (on the top of the stack) until a
left parenthesis is encountered;
Remove the left parenthesis;
3
17
Q: A+B*C—-(D/E~F)*G)*H)
Q STACK Output Postfix String P
A (A
+ (+ A
(|C+(C A
B |(+ (A B
3 (+(C* A B
c |(+ (™ ABC
+ (- ABC™*
(|C+C-(ABC™
D |(+ (- ABC=*D
I+ (C=-(/ ABC=*D
E |(+(-(/ ABC=*DE
A+ (- (/7N ABC=*DE
F |(+(C-(C/ " ABC*DEF
y |+ (- ABC*DEF~"/

18

01-04-2016

Q STACK Output Postfix String P

* |+ (-* ABC*DEF~"/

G |(+(-* ABC*DEF~/G

) [+ ABC*DEF~/G™* -

* [+ * ABC*DEFA~/G™* -

H (+=* ABC*DEF~”™~/G™*-H

) ABC*DEF~/G™*-H=*+

19

Some Other Applications

20

01-04-2016

10

* Reversing a string of characters.

» Generating 3-address code from Polish
postfix (or prefix) expressions.

* Handling function calls and returns, and
recursion.

21

01-04-2016

11

