
01-04-2016

1

Some Applications of Stack

1

Arithmetic Expressions
Polish Notation

2

01-04-2016

2

What is Polish Notation?

• Conventionally, we use the operator
symbol between its two operands in an
arithmetic expression.

A+B C–D*E A*(B+C)

– We can use parentheses to change the
precedence of the operators.

– Operator precedence is pre-defined.

3

• This notation is called INFIX notation.
– Parentheses can change the precedence of

evaluation.

– Multiple passes required for evaluation.

• Polish notation

– Named after Polish mathematician JanNamed after Polish mathematician Jan
Lukasiewicz.

– Polish POSTFIX notation
• Refers to the notation in which the operator symbol

is placed after its two operands.
AB+ CD* AB*CD+/

Polish PREFIX notation

4

– Polish PREFIX notation
• Refers to the notation in which the operator symbol

is placed before its two operands.
+AB *CD /*AB-CD

01-04-2016

3

How to convert an infix expression to Polish
form?

• Write down the expression in fully parenthesized
form. Then convert stepwise.

• Example:
A+(B*C)/D-(E*F)-G

(((A+((B*C)/D))-(E*F))-G)

P li h P fi f

5

• Polish Postfix form:
A B C * D / + E F * - G -

• Polish Prefix form:
– Try it out ….

• Advantages:

– No concept of operator priority.No concept of operator priority.

• Simplifies the expression evaluation rule.

– No need of any parenthesis.

• Hence no ambiguity in the order of evaluation.

– Evaluation can be carried out using a single
scan over the expression string.

6

sca o e t e e p ess o st g

• Using stack.

01-04-2016

4

Evaluation of a Polish Expression

• Can be done very conveniently using a
stack.

– We would use the Polish postfix notation as
illustration.

• Requires a single pass through the expression string
from left to right.

• Polish prefix evaluation would be similar, but the
string needs to be scanned from right to left.

7

string needs to be scanned from right to left.

while (not end of string) do
{

a = get next token();g _ _ ();

if (a is an operand)

push (a);

if (a is an operator)

{

y = pop(); x = pop();

push (x ‘a’ y);

8

}

}

return (pop());

01-04-2016

5

Evaluate: 10 6 3 - * 7 4 + -

Scan string from left to right:
10: push (10) Stack: 10

6: push (6) Stack: 10 6

3: push (3) Stack: 10 6 3

-: y = pop() = 3 Stack: 10 6

x = pop() = 6 Stack: 10

push (x-y) Stack: 10 3

*: y = pop() = 3 Stack: 10

x = pop() = 10 Stack: EMPTY

push (x*y) Stack: 30

7: push (7) Stack: 30 7

4: push (4) Stack: 30 7 4

+: y = pop() = 4 Stack: 30 7

x = pop() = 7 Stack: 30

push (x+y) Stack: 30 11

-: y = pop() = 11 Stack: 30

x = pop() = 30 Stack: EMPTY

push (x-y) Stack: 19

9

Final result
in stack

Parenthesis Matching

10

01-04-2016

6

The Basic Problem

• Given a parenthesized expression, to test
whether the expression is properly
parenthesized.

– Whenever a left parenthesis is encountered, it
is pushed in the stack.

– Whenever a right parenthesis is encountered,
pop from stack and check if the parentheses

t h

11

match.

– Works for multiple types of parentheses

(), { }, []

while (not end of string) do
{

a = get_next_token();
if (a is ‘(‘ or ‘{‘ or ‘[‘)

push (a);
if (a is ‘)’ or ‘}’ or ‘]’)
{{

if (isempty()) {
printf (”Not well formed”);
exit();

}
x = pop();
if (a and x do not match) {

printf (”Not well formed”);
it()

12

exit();
}

}
}
if (not isempty())
printf (”Not well formed”);

01-04-2016

7

Given expression: (a + (b – c) * (d + e))

Search string for parenthesis from left to right:
(: push (‘(‘) Stack: (

(: push (‘(‘) Stack: ((

): x = pop() = (Stack: (MATCH

(: push (‘(‘) Stack: ((

): x = pop() = (Stack: (MATCH

): x = pop() = (Stack: EMPTY MATCH

Given expression: (a + (b – c)) * d)

Search string for parenthesis from left to right:
(: push (‘(‘) Stack: ((: push (‘(‘) Stack: (

(: push (‘(‘) Stack: ((

): x = pop() = (Stack: (MATCH

): x = pop() = (Stack: EMPTY MATCH

): x = pop() = (Stack: ? MISMATCH

13

Converting an INFIX expression to
POSTFIX

14

01-04-2016

8

Basic Idea

• Let Q denote an infix expression.

– May contain left and right parentheses.

– Operators are:
• Highest priority: ^ (exponentiation)

• Then: * (multiplication), / (division)

• Then: + (addition), – (subtraction)

– Operators at the same level are evaluated from
left to right.

15

left to right.

• In the algorithm to be presented:
– We begin by pushing a ‘(’ in the stack.

– Also add a ‘)’ at the end of Q.

The Algorithm (Q:: given infix expression,
P:: output postfix expression)

push (‘(’);
Add “)” to the end of Q;

while (not end of string in Q do)(g Q)

{

a = get_next_token();

if (a is an operand) add it to P;

if (a is ‘(’) push(a);

if (a is an operator)

{

Repeatedly pop from stack and add to P each

16

Repeatedly pop from stack and add to P each

operator (on top of the stack) which has the

same or higher precedence than “a”;

push(a);

}

01-04-2016

9

if (a is ‘)’)

{

Repeatedly pop from stack and add to P eachp y p p

operator (on the top of the stack) until a

left parenthesis is encountered;

Remove the left parenthesis;

}

}

17

Q: A + (B * C – (D / E ^ F) * G) * H)

Q STACK Output Postfix String P

A (A

+ (+ A

((+ (A

B (+ (A B

* (+ (* A B

C (+ (* A B C

- (+ (- A B C *

((+ (- (A B C *

D (+ (- (A B C * D

18

/ (+ (- (/ A B C * D

E (+ (- (/ A B C * D E

^ (+ (- (/ ^ A B C * D E

F (+ (- (/ ^ A B C * D E F

) (+ (- A B C * D E F ^ /

01-04-2016

10

Q STACK Output Postfix String P

* (+ (- * A B C * D E F ^ /* (+ (- * A B C * D E F /

G (+ (- * A B C * D E F ^ / G

) (+ A B C * D E F ^ / G * -

* (+ * A B C * D E F ^ / G * -

H (+ * A B C * D E F ^ / G * - H

) A B C * D E F ^ / G * - H * +

19

Some Other Applications

20

01-04-2016

11

• Reversing a string of characters.

• Generating 3-address code from PolishGenerating 3 address code from Polish
postfix (or prefix) expressions.

• Handling function calls and returns, and
recursion.

21

